

ACTUALISATION DU PLAN DIRECTEUR RÉVISÉ DES MOYENS DE PRODUCTION ET DE TRANSPORT D'ÉNERGIE ÉLECTRIQUE DE LA CEDEAO

Economic Community
Of West African States

Rapport Final Tome 1:

Données de l'étude

Communauté Economique Des Etats de l'Afrique de l'Ouest

General Secretariat / Secrétariat Général

SYSTEME D'ECHANGES D'ENERGIE ELECTRIQUE OUEST AFRICAIN

TABLE DES MATIERES

1.	INTRO	DDUCTIC	JN	4
	1.1.	Conte	xte et objectifs de l'étude	4
	1.2.	Struct	ure du Tome 1 du Rapport Final	6
2.	ASPEC	CTS MET	HODOLOGIQUES	7
	2.1.	Critère	es et standards de Planification	7
		2.1.1.	Manuel d'exploitation de l'EEEOA (Juillet 2007)	7
		2.1.2.		
	2.2.	Métho	odologie	13
		2.2.1.	Phase 1 : inventaire détaillé des moyens de production, des réseaux de transport et de la demande d'électricité	14
		2.2.2.	Phases 2 & 3 : plan optimal production transport et analyse technique	
		2.2.3.	Phase 4 : classement des projets prioritaires	
		2.2.4.	Phase 5 : Le programme final d'investissements prioritaires et la stratégie mise en œuvre des projets	e de
3.	DONN	IÉES DE	L'ÉTUDE ÉCONOMIQUE	20
	3.1.	Donné	ées	20
		3.1.1.	Données générales	20
		3.1.2.	Combustibles	
		3.1.3.	Prévision de la demande	
		3.1.4.	Données de génération	
		3.1.5.	Données de transport	
4.	DONN	IÉES DES	ÉTUDES DE RÉSEAUX ÉLECTRIQUES	70
	4.1.	Situat	ion actuelle des infrastructures par pays	70
		4.1.1.	Sénégal	70
		4.1.2.	Gambie	71

		4.1.3.	Guinée Bissau	72
		4.1.4.	Guinée	73
		4.1.5.	Sierra Leone	74
		4.1.6.	Libéria	75
		4.1.7.	Mali	76
		4.1.8.	Côte d'Ivoire	78
		4.1.9.	Ghana	80
		4.1.10.	Togo/Bénin	83
		4.1.11.	Burkina Faso	85
		4.1.12.	Niger	88
		4.1.13.	Nigéria	89
	4.2.	Interc	onnexions existantes	95
		4.2.1.	Interconnexions Zone B	96
		4.2.2.	Interconnexions Zone A	96
	4.3.	État de	es installations de transport	97
		4.3.1.	Etat général du réseau THT	97
		4.3.2.	Etat général du réseau HT	98
	4.4.	Projet	s nationaux	101
	4.5.	Prix uı	nitaires des équipements	102
5.	ASPEC	TS FINA	NCIERS, LÉGAUX ET INSTITUTIONNELS	105
	5.1.	Object	tifs poursuivis	105
	5.2.	Domai	ine d'intervention	105
	5.3.	Appro	che suivie	106
	5.4.	Résum	né des données récoltées à ce stade	106
		5.4.1.	Anciennes données financières	106
		5.4.2.	Institutions du secteur de l'électricité, gouvernance et cadre légal	108
		5.4.3.	Lois additionnelles et résolutions de l'EEEOA	109
		5.4.4.	Autres documents	109
	5.5.	Métho d'une	dologie d'évaluation économique et financière et de la formu stratégie d'implementation	lation 110
		5.5.1.	Evaluation économique et financière	110
6.	ANNEX	KE – ZON	NES À FORT POTENTIEL ÉOLIEN PAR PAYS	112
7	ΔNNE	(F · SIM	ULATIONS "THERMOFLOW" GAZ ET CHARBON	112
<i>,</i> .	/ 11 VI VL/	(E : 5111)	SECTION OF LOW GIVE ET CHARDON III.	110
8.	ANNEX CHAR	(E: ETUI	DE DE STABILITE: MODELE PSA POUR L'ANNEE 2025, POINTE DE	123
	0 1	Nooud		122

6.

7.

	8.2.	Charges	133
	8.3.	Shunts	135
	8.4.	Ligne	137
	8.5.	Couplages	147
	8.6.	Transformateurs	147
9.	ANNEX	KE: ETUDE DE STABILITE: MODELE DYNAMIQUE PSA POUR L'ANNEE 2015 : EES GENERATION	.153
	9.1.	Generateurs	155
	9.2.	Convertisseurs	167
	9.3.	SVC	167

1. INTRODUCTION

Le présent rapport constitue le Tome 1 du Rapport Final de 'L'Actualisation du Plan Directeur Révisé des moyens de production et de transport d'énergie électrique de la CEDEAO'.

Le Rapport Final se compose des parties suivantes :

Tome 1: Données de l'étude

Tome 2: Plan optimal de développement et Analyse du fonctionnement et de la

stabilité du réseau de transport

Tome 3 : Développement du programme d'investissement et stratégie de mise en

œuvre des projets prioritaires

Tome 4 : Synthèse du rapport

1.1. Contexte et objectifs de l'étude

La Communauté Economique des Etats d'Afrique de l'Ouest (CEDEAO) englobe 15 pays, dont quatorze sont situés sur le continent, et dont la population totale était estimée à 260 millions en 2005. Cette population est très inégalement répartie à l'intérieur de cet espace économique. Le rythme de croissance de la population urbaine (3.81%/an) est nettement supérieur à celui de la population globale de la région.

Les principales ressources énergétiques dont dispose l'Afrique de l'Ouest (l'hydroélectricité, le pétrole, le gaz naturel, le charbon et les sources d'énergie renouvelable) sont elles aussi inégalement réparties sur le territoire de la Région.

Le système d'Echange d'Energie Electrique Ouest Africain (EEEOA) qui est une institution spécialisée de la CEDEAO constitue le cadre institutionnel du système électrique régional. L'objectif stratégique de l'EEEOA est basé sur une vision dynamique de l'intégration de l'exploitation des réseaux électriques nationaux dans un marché régional unifié. Ce marché régional unifié doit permettre d'assurer à moyen et long terme un approvisionnement d'électricité optimal, fiable et à un coût abordable aux populations des différents états membres.

L'objectif est de viser le bien économique collectif, grâce à une coopération à long terme dans le secteur de l'énergie et au développement des échanges transfrontaliers d'électricité.

Les réseaux de l'EEEOA couvrent deux zones géographiques A et B :

- Les pays de la zone A (Nigeria, Niger, Bénin, Togo, Burkina Faso, Ghana, et côte d'Ivoire) sont déjà reliés par des interconnexions.
- Parmi les pays de la zone B (Mali, Libéria, Guinée, Sierra Leone, Guinée Bissau, Sénégal et Gambie) seuls le Sénégal et le Mali sont déjà interconnectés.

Actuellement, le secteur électrique des pays de l'EEEOA ne dessert que 30% de la population. La charge maximale pour la région a dépassé 6500MW pour une consommation totale de près de 40000GWh.

Le dernier plan directeur de l'EEEOA élaboré en 2004 prévoyait à l'horizon 2020 une demande maximale de près de 22500MW. Cependant, depuis 2007, la production totale des systèmes interconnectés à accusé une baisse importante s'écartant ainsi des prévisions de croissance soutenues dans le dernier plan. Cette baisse de production est principalement liée à l'insuffisance des infrastructures de production et de transport d'électricité, à la crise énergétique de 2007 et à l'inadéquation des tarifs d'électricité.

Ainsi, actuellement, la demande d'électricité est loin d'être satisfaite avec un niveau de défaillance particulièrement élevé dans presque tous les pays de la région.

Cette situation a mené les pays membres de l'EEEOA à s'engager dans des programmes d'urgence de développement de capacité de production, souvent ambitieux, mais souvent différents de ceux prévus dans le plan directeur de 2004. On peut citer en particulier le Plan d'Urgence et de Sécurité et d'Approvisionnement en Energie (PUSAE) de l'EEEOA établi en 2007. Ce plan vise à appliquer des solutions d'envergure régionale pour pallier à la situation d'insuffisance sévère des moyens de production et de transport d'électricité.

Les écarts importants relevés entre les projets du dernier plan directeur et le développement effectif des systèmes électriques, ont mis en évidence l'opportunité d'une mise à jour urgente du plan directeur de l'EEEOA.

La présente étude a ainsi pour but de mettre à jour le plan régional de production et de transport à l'attention du Secrétariat Général de l'EEEOA et de l'ensemble des secteurs électriques des états membres.

L'objectif de l'étude est, étant donné le contexte, de permettre aux différents acteurs du secteur de l'électricités d'avoir une vision claire, globale et cohérente sur le développement futur des infrastructures de production et de transport d'électricité dans la région et une base rationnelle de prise de décision pour leur mise en œuvre.

Cette mise à jour du plan directeur vise à intégrer les développements en cours dans une stratégie d'expansion à moyen et long termes des infrastructures régionales de production et de transport, demeurant toujours cohérente avec la vision de l'EEEOA.

Les différentes actions à entreprendre au cours de l'actualisation du plan directeur portent sur les points suivants :

- Actualisation des caractéristiques du système électrique régional : inventaire pays par pays et par organisation régionale (OMVS, OMVG) des principales sources de production, réseau de transport, échanges transfrontalier d'énergie électrique, de la situation institutionnelle et financière du secteur de l'électricité;
- Analyse de l'équilibre de l'offre et de la demande d'énergie électrique aussi bien au niveau de chaque pays qu'au niveau sous-régional et régional, exposé à des situations extrêmes (délestage, demande non desservie...);
- Détermination du plan optimal de développement du système de production et de transport régional tenant compte entre autres des contraintes politiques et financières qui affectent le fonctionnement des sociétés d'électricité;
- Actualisation des coûts des investissements requis pour la mise en œuvre et estimation des augmentations tarifaires nécessaires;

- Actualisation des études de stabilités statique et dynamique afin d'évaluer l'impact des nouvelles infrastructures de production et de transport d'électricité;
- Evaluation préliminaire des principaux impacts sur l'environnement;
- Recommandation de stratégies de mise en œuvre du programme prioritaire d'investissements de l'EEEOA en intégrant les nouveaux projets retenus, indiquant les conditions préalables à leur réalisation ainsi que leurs avantages et inconvénients respectifs.

1.2. Structure du Tome 1 du Rapport Final

Ce premier rapport intermédiaire est structuré comme suit :

Au chapitre 2, les principes de la méthodologie qui sera appliquée dans l'étude sont d'abord rappelés.

Au chapitre 3 sont décrites les données relatives à l'étude économique.

Le chapitre 4 sont décrites les données relatives aux études de réseaux.

Le chapitre 5 aborde les aspects institutionnels et financiers.

Les annexes donnent plus de détails relatifs à la production d'électricité (potentiels éoliens des pays, simulations 'thermoflow' gaz et charbon) et aux caractéristiques techniques des branches des réseaux électriques.

2. ASPECTS METHODOLOGIQUES

Avant de décrire plus en détails cette méthodologie, il convient de définir des critères et standards à définir dans la planification des systèmes.

2.1. Critères et standards de Planification

L'élaboration d'un plan directeur nécessite la définition d'un certain nombre de critères et standards à respecter. Ceux-ci correspondent d'une part à des critères de sécurité liés à l'exploitation des réseaux et, d'autre part, à des critères liés à la fiabilité du système électrique. Le but final est d'harmoniser ces critères pour l'ensemble des pays membres de l'EEEOA.

L'EEEOA a réalisé un travail de définition de critères communs de planification et d'exploitation dans le manuel d'exploitation de l'EEEOA qui servira de référence pour l'étude.

Les lignes directrices reprises dans ce document seront en outre complétées par des règles suivies en Europe (ENTSO-E ex UCTE) et dans les pays africains. Les standards utilisés en Europe ne peuvent pas, du moins dans les premières années, être appliqués dans les pays de l'EEEOA compte tenu des caractéristiques des réseaux et des déficits d'équipement actuels importants dans le référentiel régional. Il faut donc considérer un phasage pour combler progressivement ces déficits.

2.1.1. Manuel d'exploitation de l'EEEOA (Juillet 2007)

Dans le Manuel d'exploitation, les principales directives à considérer pour le fonctionnement du réseau concernent les sujets suivants :

- Le réglage fréquence-puissance (directive 1)
- La programmation des échanges et décomptes entre zones de réglages (directive 2)
- La sécurité d'exploitation (directive 3)
- La gestion prévisionnelle (directive 4)
- Les procédures d'urgence (directive 5)

Pour le réglage primaire, l'incident de référence est la perte simultanée de la plus grosse unité au Nigéria (220 MW) et de la plus grosse unité du groupe Ghana-Côte d'Ivoire-Togo-Bénin-Burkina Faso (170 MW)

On peut remarquer que, en ce qui concerne le réglage secondaire, le processus de correction doit pouvoir être effectué en 20 minutes et correspond à la plus grosse unité de la zone de réglage considérée.

En ce qui concerne la sécurité d'exploitation, le critère N-1 est d'application (perte d'un groupe de production ou d'un élément du réseau de transport) dans toutes les zones de réglage.

Chaque opérateur de zone de réglage devra exploiter ses ressources réactives de manière à maintenir les tensions du système dans les limites admissibles selon le critère N-1.

En exploitation normale, la tension des réseaux 330 kV, 225 kV, 161 kV et 132 kV du système de transport aux frontières demeurera dans les limites de plus ou moins 5% de la valeur nominale. Les tensions maximales et minimale sont de +10% et -10% (mais seulement pendant 15 minutes au maximum au-delà de plus ou moins 5%).

V nominale	V exploit normale +- 5%	Vmin	Vmax +10%
330 kV	315-345	300	360
225 kV	214-236	200	245
161 kV	153-169	145	175
132 kV	126-138	120	145

Table 1 – Tensions d'exploitation, minimale et maximale

Les transits d'énergie réactive sur les interconnexions sont maintenus à un niveau minimum et si possible pas au-delà de la puissance naturelle, dans le but de limiter les chutes de tension et d'allouer la capacité de transfert à l'énergie active.

2.1.2. Application aux cas particuliers des différents pays et uniformisation

2.1.2.1. CRITÈRES DU RÉSEAU DE TRANSPORT

Chaque opérateur de zone de réglage doit appliquer la règle N-1 en tenant compte des spécificités de son réseau local pour éviter des surcharges, baisse de tension inacceptable, et perte de stabilité, déclenchements en cascade, etc. Il devra aussi prendre les actions correctives nécessaires telles que réductions de charges et délestages si nécessaire.

Dans le but d'uniformiser les critères de sécurité pour l'ensemble des pays tout en tenant compte des spécificités des pays africains, les hypothèses suivantes sont proposées pour la présente étude pour l'ensemble de la région. Il faut souligner que ces critères sont un objectif qui ne pourra être atteint dans beaucoup de pays qu'après une période de transition et de mise à niveau du réseau de transport:

Plage de tension admissible en exploitation

Etat N (situation normale ou état sain) : $\pm 5\%$

Etat N-1 (après incident): $\pm 10\%$

Plage de fréquence admissible en exploitation

Etat N (situation normale ou état sain): 49.8 à 50.2 Hz

Etat N-1 (après incident): 49.5 à 50.5 Hz

La réserve secondaire doit agir dans les 20 minutes et est égale à la puissance de la plus grosse machine en ligne dans la zone de réglage considérée.

Niveau de compensation en distribution

Compte tenu de la présence de conditionnements d'air dans les charges (moteurs à induction), il convient de garantir un facteur de puissance dans les sous-stations de distribution le plus élevé possible afin de réduire les risques d'écroulements de tension et minimiser les investissements en équipements de transport. Il est proposé de viser à long terme un facteur de puissance minimum de 0.9 à ce niveau.

Puissances admissibles de court-circuit

Les valeurs cibles proposées sont :

330 kV: 50 kA

225 kV: 50 kA

161 kV: 40 kA

Charges des éléments de réseau admissibles en planification:

Les valeurs maximales admissibles proposées (exprimées en % de la puissance nominale) sont les suivantes :

Lignes: 100 % à l'état N et 110% à l'état N-1

Transformateurs: 100 % à l'état N et 120 % à l'état N-1

Fiabilité des éléments de réseau

La fiabilité des lignes et des transformateurs est supposée être de 0.995. Cette valeur correspond à une indisponibilité totale (planifiée + non planifiée) de 44 heures par an.

2.1.2.2. CRITÈRES DU PARC DE PRODUCTION

La fiabilité d'un parc de production s'exprime en terme de capacité de ce système à couvrir la demande de puissance à n'importe quel moment.

Cette capacité à couvrir la demande de puissance dépend d'une part de l'incertitude qui affecte la demande prévue et d'autre part des nombreux paramètres qui limitent la puissance totale que le parc de production peut développer à chaque instant.

Les facteurs qui limitent la puissance que le système peut développer sont par exemple :

- Les taux de pannes non prévues qui affectent les groupes de production ;
- Les indisponibilités prévues des unités dues à la maintenance ;
- Les réductions de puissances des générateurs thermiques dues à une élévation de température ;
- Le manque d'eau dans les réservoirs des centrales hydroélectriques.

Il est nécessaire que le système de production dispose à tout moment d'un excédent de capacité en réserve pour pallier les différents types de pannes qui peuvent survenir.

La planification du développement du parc de production nécessite de prendre en considération des critères de sécurité qui garantissent à long terme un taux de réserve suffisant en puissance installée.

Les critères utilisés sont généralement :

- Un taux de réserve minimum en puissance installée ou disponible ;
- L'espérance mathématique de la durée en défaillance, (loss of load probability LOLP);
- L'espérance mathématique de l'énergie annuelle en défaillance ou énergie non desservie (END).

La réserve minimale nécessaire en puissance installée qui garantisse un niveau maximal de LOLP ou de END dépend notamment :

- De la taille relative de chaque unité de production par rapport à la demande totale appelée ;
- Du type d'hydraulicité (année humide, moyenne ou sèche) ;
- De la proportion de capacité installée en centrales hydroélectriques par rapport à la capacité installée en en centrales thermique ;
- Du degré d'interconnexion de système considéré avec d'autres systèmes voisins.

La réunion de plusieurs parcs de production à l'aide d'un réseau suffisant d'interconnexions permet de réduire la taille relative des unités par rapport à la demande totale desservie et de réduire par conséquent la puissance totale installée dans l'ensemble des pays qui est nécessaire pour garantir un niveau maximum de défaillance donné.

Notons que la taille unitaire des groupes peut avoir un impact non seulement sur l'énergie en défaillance du système mais également sur la stabilité de celui-ci. De ce point de vue il est généralement admis que la taille unitaire du plus gros groupe ne puisse dépasser 8 à 10% de la demande totale appelée.

Les systèmes de production sont généralement planifiés en s'imposant un taux de réserve minimal ou une durée de défaillance maximale donnée. Le coût de l'énergie en défaillance (cost of unserved Energy CUE) du système est une conséquence de ce choix.

Inversément, le choix d'un coût d'énergie en défaillance donné conduit à long terme à un volume correspondant d'investissements et à un niveau correspondant de sécurité :

- Si le coût de l'énergie en défaillance CUE est élevé, cela crée un fort incitant pour investir en production tout en réduisant l'énergie en défaillance END (ce qui est généralement le cas dans les régions industrialisées, les centres urbains, ...).
- Si le coût de l'énergie en défaillance est faible, le système peut accepter une sécurité moindre cad une durée en défaillance LOLP plus élevée (ce qui est typiquement le cas de régions peu industrialisées, de régions rurales,...).

On peut citer les approches suivantes pour estimer le coût de la défaillance :

Coût implicite de l'énergie non desservie :

Ce coût est basé sur l'introduction et le maintien en service d'une unité supplémentaire de pointe pour couvrir l'énergie en défaillance. La durée de fonctionnement d'une telle unité correspond à la valeur du LOLP (espérance de durée en défaillance).

Coût explicite de l'énergie non desservie:

Ce coût est basé sur le coût de la production de biens qui est perdue suite à la défaillance.

Au niveau national, on peut estimer de façon simple le rapport PIB/électricité produite qui donne une image de la « richesse » produite par le pays pour chaque KWh consommé. Il faut noter que cette approche tend à surestimer le coût de l'énergie non desservie CUE car faudrait déterminer pour être précis la part du PIB qui dépend directement de l'électricité.

Coût de substitution:

Le coût de substitution que certains clients sont prêts à payer (willingness-to-pay WTP) pour avoir une alimentation fiable et non interrompue. Il s'agit du coût de maintien en service et d'exploitation d'un groupe diesel de secours qu'un client est prêt à payer pour garantir la qualité de son alimentation en électricité

Le coût implicite de l'énergie non desservie cité ci-avant consiste à réduire le nombre d'heures de défaillance du parc de production par l'installation d'une unité de pointe par exemple une turbine à gaz. Il est calculé en ajoutant aux frais fixes divisés par la durée en défaillance, les frais proportionnels de combustibles et de maintenance.

On peut noter que, en pratique, si une unité de pointe supplémentaire est implémentée dans le système, elle prendra la place d'une unité plus ancienne dans l'empilement des unités de production pour couvrir la demande, compte tenu de ses caractéristiques, et reléguera cette ancienne unité plus haut dans l'empilement.

En supposant pour une nouvelle unité de pointe un coût de 750 USD par kW installé, un taux d'actualisation de 10%, une durée de vie de 25 ans, il vient, comme illustré dans la Figure 1 ci-après, que le coût implicite de l'énergie non desservie varie de plus de 9000 USD/MWh pour un objectif de LOLP de 10 heures/an à moins de 600 USD/MWh pour un objectif de LOLP de 250 heures/an.

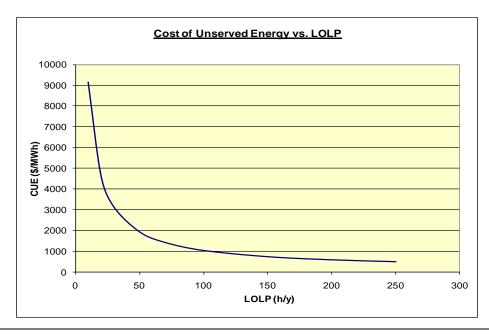


Figure 1 – Coût de l'énergie non desservie en fonction de la durée en défaillance (LOLP)

A titre d'exemple, si on applique le coût explicite de l'énergie non desservie cité ciavant au Ghana sur la base du PIB national et de la consommation totale d'énergie en 2010, on obtient un coût de la défaillance de 2600 USD/MWh, qui correspond à la Figure 1 à une durée en défaillance LOLP d'environ 45 heures/an. En limitant le calcul au PIB du secteur industriel, on obtient un coût de la défaillance de 1300 USD/MWh, qui correspond à la Figure 1 à une durée en défaillance LOLP d'environ 75 heures/an.

Il n'est pas aisé de définir un coût de la défaillance car il varie fortement en fonction des catégories de consommateurs (résidentiels, industriels, ...), des applications de l'électricité, du degré et des caractéristiques d'interruptions (jour, nuit, durée de l'interruption). De plus, les caractéristiques des pays membres de l'EEEOA varient fortement d'un pays à l'autre.

La Table 2 ci-après illustre la diversité des valeurs retenues pour le coût de l'énergie non desservie dans différents pays africains et asiatiques.

Country	Source	Valeur par kWh	Monnaie	USD/MWh
_				
South Africa	Eskom	19	Rand	2780
Gabon	Etude	1200	FCFA	2110
Burkina Faso	Etude	1000	FCFA	1820
Senegal	Senelec	1000	FCFA	1820
Sri Lanka	Etude	1.5	USD	1500
Cameroon	Contrat	700	FCFA	1230
Libye	Etude	1	USD	1000
Ghana	Plan Directeur	0.15	USD	150
ECOWAS	Purdue study	0.14	USD	140
Andhra Pradesh	Etude	0.12	USD	120
Guinée	EDG	0.087	USD	90

Table 2 – Coût de l'énergie non desservie dans différents pays (Source : West Africa Regional Transmission Study – Vol. 2 : Master Plan)

12/167

Dans les pays européens et les pays arabes du Golfe, une durée en défaillance LOLP de l'ordre de 24h/an soit 0.27% est souvent prise en considération.

Il est de bonne pratique, dans les pays en développement, de considérer une durée maximum de défaillance LOLP de l'ordre de 1% du temps. En Inde par exemple, on utilise un critère de durée en défaillance (LOLP) de 1% et un critère d'énergie en défaillance (END) de 0.15%.

Cependant, actuellement l'ensemble des parcs de production des pays de l'EEEOA sont fortement sous-équipés ce qui entraîne des coupures d'électricité fréquentes. Il s'ensuit que les durées et les énergies en défaillance sont en réalité beaucoup plus élevées.

Si l'on considère par exemple les cas du Ghana dont le sous-équipement est actuellement moindre que celui des pays voisins, le taux de réserve en puissance effectivement disponible (inférieure à la puissance installée) est de l'ordre de 20%.. Pour ce taux de réserve, la durée en défaillance LOLP calculée (en exploitation isolée) reste élevée et est très sensible aux conditions hydrologiques : 7h/an en année humide et 200 h/an en année moyenne. Dans les conditions actuelles, il serait donc logique de proposer pour ce pays un objectif à long terme de LOLP d'environ 100heures/an qui correspond à un taux de réserve en puissance disponible supérieur au taux actuel de 20%.

De façon générale, dans le contexte des pays de l'EEEOA qui vient d'être décrit, il semble donc judicieux d'avoir en moyenne pour objectif une durée en défaillance de l'ordre de 100 heures/an (1.14%) correspondant à un coût de l'énergie non desservie de l'ordre de 1000 à 1500 USD/MWh.

Compte tenu de la situation actuelle des pays de l'EEEOA, il est proposé dans la présente étude :

- De considérer un objectif à long terme de taux de réserve en puissance 'disponible' de l'ordre de 25 à 30%.
- De considérer une évolution progressive de la réserve en puissance disponible pendant une période transitoire compte tenu de l'importance du déficit actuel à combler.

2.2. Méthodologie

La méthodologie proposée pour l'étude comporte les phases suivantes :

Phase 1:

Après une collecte de données menée dans l'ensemble des pays membres, le consultant proposera un inventaire complet et détaillé des moyens de production, des réseaux de transport et de la demande d'électricité composant le bilan offre/demande des 14 pays membres pour les 15 ans à venir. Cet inventaire a pour but d'avoir une vision claire de la situation énergétique de chaque pays et de situer dans les plans de développement nationaux la place des projets régionaux de l'EEEOA.

Ce rapport fera l'objet d'un atelier de présentation avec les représentants des pays membres.

Phase 2:

Ensuite, sur base cet inventaire, le plan optimal de production/transport sera déterminé. Les objectifs poursuivis sont les suivants :

- trouver l'optimum combiné entre le développement de parc de production à l'échelle de la région et le développement du réseau de transport intra-régional tout en assurant la demande au coût minimum;
- identifier les projets régionaux de transport et de production à développer en priorité.

Phase 3:

La troisième phase de la méthodologie consiste en la simulation et l'évaluation des performances systémiques du réseau interconnecté. Il sera vérifié que les critères de planification et d'exploitation des réseaux de transport sont respectés. Des simulations statiques et dynamiques seront effectuées à l'aide du logiciel EUROSTAG. Le plan optimal de production/transport sera revu pour tenir compte de l'impact de ces contraintes techniques.

Phase 4:

La quatrième phase de la méthodologie consiste à définir un programme prioritaire d'investissement pour les années à venir. Ce classement s'effectuera sur base des analyses économique et technique précédentes, de l'évaluation préliminaire environnementale et en concertation avec l'EEEOA.

Phase 5:

Enfin, la dernière phase consiste à revoir le programme d'investissement prioritaire en prenant en compte le contexte financier et institutionnel de la région et à élaborer la stratégie de mise en œuvre des projets.

L'étude se terminera par la publication d'un rapport de synthèse.

Les différentes phases de cette méthodologie sont décrites plus en détails ci-après.

2.2.1. Phase 1 : inventaire détaillé des moyens de production, des réseaux de transport et de la demande d'électricité

La phase 1 fera plus particulièrement l'objet de ce Tome 1 du Rapport Final et sera décrite de façon détaillée dans les chapitres suivants.

La carte présentée ci-après reprend les grands projets régionaux d'interconnexion et les projets hydroélectriques existant, décidés, planifiés et envisagés.

2.2.2. Phases 2 & 3 : plan optimal production transport et analyse technique

L'objectif poursuivi est de trouver une combinaison optimale entre :

- d'une part le développement des grands projets de production d'électricité à l'échelle régionale,
- et d'autre part le développement du réseau d'interconnexions entre les différents pays.

Cette combinaison optimale doit permettre de couvrir les demandes des pays au moindre coût, tout en tenant compte des caractéristiques des ressources hydro-électriques, des nouvelles technologies en thermique et en renouvelables, des ressources en combustibles disponibles et d'un niveau de fiabilité imposé (cfr le chapitre sur les critères et standards de planification).

Pour calculer cet optimum économique on utilisera un modèle combiné des parcs de production et des principaux axes de transport (modèle PRELE). Ce modèle permet d'optimiser l'exploitation et les décisions d'investissement du système électrique de l'EEEOA sur la période 2010 - 2025 en tenant compte des diverses contraintes de ce système. Ces contraintes concernent la demande, les énergies primaires disponibles (années sèches, années humides, disponibilité de gaz naturel), des contraintes d'exploitation, etc.

Ce modèle sera utilisé en deux étapes :

Première étape : comparer deux types de scénarios.

Le scénario 1 consistera à simuler les plans de développement nationaux 2010-2025 sans développer de nouvelles interconnexions et sera pris comme référence.

Le scénario 2 consistera à construire le développement de production optimal régional de l'EEEOA 2020-2025 sans limite de transit sur les interconnexions possibles entre les pays membres.

Ce second scenario est un scénario 'idéal'. Il mettra en valeur les grands projets de production les plus intéressants au niveau régional de l'EEEOA. Il permettra d'établir une classification des grands projets de production prioritaires en même temps que les transits d'énergie correspondants entre les pays concernés

La différence entre les coûts totaux actualisés des scenarios 1 et 2 représente le bénéfice maximal que la région peut attendre en ce qui concerne la production.

Seconde étape : déterminer les projets régionaux d'interconnexion à développer :

Partant du scénario 2, on construira ensuite le scénario 3 de référence en introduisant dans les simulations technico-économiques (modèle PRELE) les capacités de transit maximales des différentes interconnexions. Les résultats conduiront éventuellement à revoir la classification des grands projets de production prioritaires et à envisager des projets régionaux d'interconnexion supplémentaires qui s'avéreront nécessaires pour réaliser les échanges internationaux de façon optimale.

Ces études permettront de déterminer les projets d'interconnexion régionaux à développer.

En effet, chaque projet régional d'interconnexion:

- d'une part, implique des coûts d'investissement et d'exploitation
- d'autre part entraîne des échanges de puissance entre les pays et de cette façon rend possible des projets de production régionaux et permet de se rapprocher de l'optimum théorique de production régional établi précédemment.

Les grands projets régionaux d'interconnexion envisagés pour commencer l'étude économique sont mentionnés ci-après à la Table 3. Cette étude économique mettra en évidence d'éventuels autres projets régionaux.

Projet	
Dorsale 330kV	Volta (GH) – Sakete (BN)
	Riviera (CI) – Prestea (GH)
CLSG	225kV Côte d'Ivoire – Libéria -Sierra Leone - Guinée
OMVG	Boucle 225kV Sénégal-Guinée
Corridor NORD	330kV Nigéria-Niger-Benin-Burkina Faso
	330kV Nord-Sud Ghana
HUB	225kV Ghana-Burkina
INTRA-	225kV Ghana-Burkina-Mali
ZONAL	225kV Mali – Côte d'Ivoire
	225kV Guinée - Mali
OMVS	Extension réseau 225kV
Dorsale Médiane	Dorsale Médiane 330kV Nigeria-Benin-Togo-Ghana
Guinée	225kV Linsan – Fomi

Table 3 – Projets régionaux d'interconnexion en commençant l'étude économique (à l'exclusion des projets prioritaires supplémentaires déduits de l'étude économique)

Une étude de sensibilité par rapport au scénario 3 de référence sera ensuite entreprise en modifiant certains paramètres clé (retards d'investissements, croissance de la demande, renouvelables, prix des combustibles, taux d'actualisation, etc.)

Les simulations technico-économiques seront complétées par l'analyse du fonctionnement du réseau de transport. Cette analyse comprendra :

- des simulations statiques (écoulements de charge, écoulements de charge optimisés, simulations d'incidents, etc.);
- des simulations dynamiques (stabilité du réseau interconnecté, sécurité dynamique compte tenu des transitoires de tension en cas d'incident ou de courtcircuit, identification du maximum transmissible des interconnexions régionales, etc.).

Suite aux études de performance et de stabilité de réseau, la liste des projets prioritaires sera revue si nécessaire.

2.2.3. Phase 4 : classement des projets prioritaires

On établira le classement des projets prioritaires d'investissement en production et en transport à partir des résultats des analyses économique et technique de la phase 3, de l'affinement de l'analyse économique et financière des projets d'interconnexion et des résultats d'une analyse environnementale préliminaire.

2.2.3.1. CONTEXTE FINANCIER, LÉGAL ET INSTITUTIONNEL

On tiendra compte également du contexte financier, légal et institutionnel dans lequel se trouvent les compagnies d'électricité.

Les aspects suivants seront notamment pris en considération :

- La situation financière des sociétés d'électricité, pour évaluer leur capacité à investir à court, moyen et à long terme ;
- La répartition des dépenses d'investissement et des bénéfices dus aux interconnexions entre les pays, et l'utilisation d'un tarif moyen (postage stamp) aux utilisateurs des interconnexions.

2.2.3.2. ANALYSE ENVIRONNEMENTALE

L'analyse environnementale a pour objectifs :

- De faire une évaluation préliminaire des principaux impacts des infrastructures de production et de transport sur l'environnement ;
- De proposer des solutions pour limiter les impacts négatifs détectés ;
- D'identifier le cas échéant les mesures de compensation à proposer pour les impacts négatifs dont l'atténuation n'est pas possible.

La méthodologie générale proposée pour analyser les impacts sur l'environnement est basée sur l'élaboration de matrices.

Une méthodologie spécifique sera appliquée à chaque projet prioritaire et comprendra 4 parties:

- Une description succincte du projet prioritaire ;
- Une description de l'état initial de l'environnement ;
- L'évaluation des impacts du projet prioritaire sur l'environnement et le social ;
- Les solutions permettant de réduire les impacts.

2.2.4. Phase 5 : Le programme final d'investissements prioritaires et la stratégie de mise en œuvre des projets

Deux approches différentes existent déjà pour la mise en œuvre des projets dans les pays de l'EEEOA :

- Dans une première approche, chaque pays finance, possède et exploite la partie des infrastructures qui est sur son territoire. Exemples : les interconnexions Nigeria-Niger, Ghana-Togo-Bénin et Ghana-Côte d'Ivoire de la dorsale côtière.
- Dans la seconde approche, une entité régionale distincte (Société à But Unique SPC) développe, possède et exploite les ouvrages, permettant une collaboration régionale. Exemple : l'OMVS entre le Sénégal, le Mali et la Mauritanie.

La méthodologie appliquée tiendra compte de la décision d'adopter les concepts de Société à But Unique (SPC) et de Partenariat Public- Privé (PPP).

Elle comprend notamment:

- Des visites sur le terrain de pays qui ont des projets transfrontaliers,
- La revue des décisions et actes complémentaires adoptés par l'EEEOA et la CEDEAO,
- La revue du cadre juridique et institutionnel, des politiques tarifaires et de la situation financière des compagnies d'électricité,
- Etc.

3. DONNÉES DE L'ÉTUDE ÉCONOMIQUE

3.1. Données

Ce chapitre décrit les données utilisées dans le cadre de l'étude économique. Ces données concernent les combustibles (coût et disponibilité), la prévision de la demande et les projets de production et de transport

3.1.1. Données générales

Le taux d'actualisation de base proposé est de 10%.

Les taux de change considérés dans l'étude sont de :

- 1€ =1.35 US\$
- 1€=650FCFA

3.1.2. Combustibles

Actuellement en Afrique de l'Ouest, une large variété de combustibles sont utilisés à savoir, le diesel (DDO), le pétrole brut léger (LCO), le fuel lourd (HFO), le gaz naturel (GN) et dans une moindre mesure le charbon. Parmi les unités planifiées, en dehors des unités hydroélectriques, la majorité d'entre elles utiliseront le GN pour les pays de la Zone A et le HFO ou DDO pour les pays de la zone B. Plusieurs études proposent également l'utilisation de charbon.

Le gaz naturel utilisé par les pays de la Zone A provient soit de ressources locales soit de gaz importé par le gazoduc d'Afrique de l'Ouest (GAO). Les combustibles liquides proviennent en grande partie du Nigéria.

Dans un souci de diversification de mix énergétique, de réduction de dépendance au combustible liquide et de réduction du coût de combustible, d'autres combustibles seront considérés pour la production d'électricité dans le cadre du plan directeur, notamment le charbon.

3.1.2.1. PRIX DES COMBUSTIBLES

Les prix du pétrole brut (donc aussi le prix de ses dérivés) et du gaz naturel sont étroitement liés. Le charbon comme source d'énergie primaire pour la production d'électricité, est également lié au prix du pétrole brut. Néanmoins, la corrélation entre les prix du charbon et du pétrole brut est moins importante que celle liant les dérivés du pétrole, le gaz naturel et le pétrole brut.

Dans cette étude, il a été convenu que les prix internationaux des combustibles seront utilisés. De cette façon, on prend en compte les coûts d'opportunité des combustibles disponibles localement et on évite que le marché de l'électricité local ne soit biaisé par des combustibles "subventionnés". En cas d'échange de puissance entre les pays, on évite ainsi qu'un pays subventionne un autre pays en lui vendant de l'électricité en dessous de son prix réel (ou prix du marché).

Dans cette étude, une grande attention est portée à la différence des prix entre les combustibles en relatif et non à leur niveau absolu. Pour cette raison, le prix du pétrole brut est considéré constant durant toute l'étude.

Toutefois, plusieurs scénarios sont étudiés en fonction du prix de référence du pétrole brut. En effet, le prix du pétrole brut a été extrêmement volatile ces dernières années avec une forte augmentation jusqu'en août 2008, puis une forte diminution jusqu'à la fin de 2008, suivie par un faible taux de récupération. Récemment, les événements dans le monde arabe et au Japon ont provoqué une augmentation importante et rapide des prix du pétrole. Comme il est impossible de tirer une tendance à long terme sur laquelle tous les experts s'accordent, différents prix du pétrole brut sont étudiés:

- Scénario bas: 75 USD/bbl;
- Scénario de base (correspondant à la situation actuelle): 100 USD/bbl;
- Scénario haut: 125 USD/bbl.

Les prix des combustibles en Afrique de l'Ouest sont présentés pour deux conditions particulières, le rendu côtier et le rendu intérieur du continent. Le rendu côtier correspond à la livraison de combustible pour l'ensemble des pays côtiers du Sénégal au Nigeria tandis que le rendu intérieur du continent correspond à la livraison pour le Mali, le Burkina Faso et le Niger. Pour chacun des rendus, un prix moyen des combustibles hors taxes et hors subventions est présenté.

Les prix des combustibles aux frontières d'un pays exportateur sont estimés sur base d'une étude de corrélation. Il faut donc y rajouter les prix de transport maritime pour avoir le rendu côtier et les prix de transport terrestre pour le rendu intérieur du continent.

Les prix de transport sont estimés sur base de l'expérience du consultant et des publications de l'IEA de la façon suivante :

- Le coût du transport maritime de combustible liquide par pétrolier de 30 000 tonnes est estimé à 5.9 USD/kton/mile;
- Le coût du transport maritime du charbon entre l'Afrique du Sud ou la Colombie et l'Afrique de l'Ouest est estimé à 20 USD/tonne pour un navire de 40 000 tonnes;
- Le coût du transport terrestre du combustible liquide par camion-citerne est estimé à 0.11USD/ton/km;
- Concernant le coût de transport du gaz naturel, trois prix différents sont à considérer suivant la source :
 - GAO (WAGP): 2 USD/MMBTU;
 - Gaz indigène : de l'ordre de 0.1 USD/MMBTU;
 - LNG: Liquéfaction: 0.9 1.3 USD/MMBTU; transport: 0.4 1.1 USD/MMBTU; Regazéification & Stockage: 0.3 0.5 USD/MMBTU.

Prenant en compte ces coûts de transport et les relations découlant de l'étude de corrélation, il est possible d'estimer un prix moyen rendu côtier et un prix moyen rendu intérieur du continent pour les différents combustibles (hors taxes et subsides):

	PRIX RENDU COTIER DES COMBUSTIBLES LIQUIDES							
OPEP	OPEP Fioul lourd (HFO)-3.5%			Diesel (DDO)		léger (LCO)		
[USD/bbl]	[USD/bbl]	[USD/GJ]	[USD/bbl]	[USD/GJ]	[USD/bbl]	[USD/GJ]		
75	58.8	9.7	92.6	16.2	75.9	13.3		
100	78.2	12.9	125.1	21.9	101.2	17.8		
125	97.6	16.0	157.7	27.6	126.5	22.3		

Table 4 - Prix des combustibles liquides - rendu côtier

PRIX RENDU INTERIEUR CONTINENT DES COMBUSTIBLES LIQUIDES							
OPEP	Fioul lourd	d (HFO)-3.5%	Diesel	(DDO)	Pétrole brut	léger (LCO)	
[USD/bbl]	[USD/bbl]	[USD/GJ]	[USD/bbl]	[USD/GJ]	[USD/bbl]	[USD/GJ]	
75	79.7	13.1	111.1	19.5	92.3	15.1	
100	99.1	16.3	143.6	25.2	115.8	18.9	
125	118.5	19.5	176.2	30.9	139.3	22.8	

Table 5 – Prix des combustibles liquides – rendu intérieur du continent

PRIX RENDU COTIER DU GAZ NATUREL							
OPEP	Gaz nature	el (GAO)	Gaz nature	el (local)	Gaz nature	el (LNG)	
[USD/bbl]	[USD/MMBTU]	[USD/GJ]	[USD/MMBTU]	[USD/GJ]	[USD/MMBTU]	[USD/GJ]	
75	8.6	8.2	6.7	6.4	9.4	8.9	
100	10.9	10.3	8.9	8.5	11.6	11.0	
125	13.1	12.4	11.2	10.6	13.8	13.1	

Table 6 – Prix du gaz naturel – rendu côtier

PRIX DU CHARBON - RENDU COTIER					
OPEP [USD/bbl]	[USD /tonne]	[USD/GJ]			
75	86.3	3.8			
100	105.4	4.6			
125	124.5	5.4			

Table 7 – Prix du charbon – rendu côtier

3.1.2.2. DISPONIBILITÉ DES COMBUSTIBLES

3.1.2.2.1. Disponibilité du gaz naturel

Ce chapitre présente les différentes possibilités d'approvisionnement en gaz naturel pour les différents pays de la CEDEAO. Trois sources sont actuellement envisageables : le gaz nigérian transporté par le gazoduc ouest africain (GAO), les ressources indigènes de certains pays et, à long terme, le LNG.

Gazoduc ouest africain

Trois pays sont actuellement desservis par le gazoduc ouest africain. Il s'agit du Bénin, du Togo et du Ghana. Ce gazoduc transportant le gaz nigérian sur une distance de 678 km est exploité commercialement depuis début 2011. En mars 2011, la première station de compression de Lagos a été mise en service permettant un approvisionnement de gaz sous pression.

Dans les années à venir, des investissements supplémentaires vont êtres réalisés dans les stations de compression et dans la production de gaz. Ces investissements vont permettre d'augmenter la quantité de gaz disponible dans le gazoduc. La figure cidessous reprend le phasage attendu.

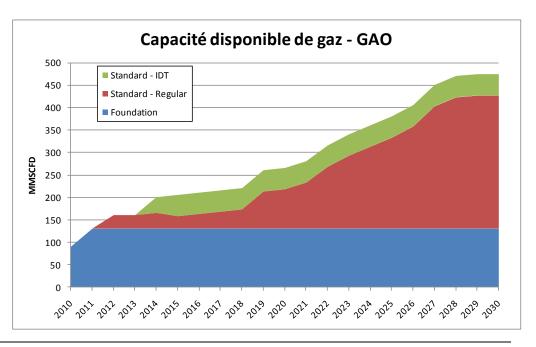


Figure 2 – Gaz disponible – GAO

Actuellement, seul le Ghana est approvisionné par le Nigéria suivant un contrat de 120 MPC/J. En tant que membres fondateurs, le Togo et le Bénin peuvent également prétendre à un approvisionnement (5 MPC/J par pays). Cependant, des problèmes techniques au Nigéria restreignent le gaz disponible et début 2011, seuls 90 MPC/J vers le Ghana sont disponibles.

Le consultant suppose que la situation sera rétablie d'ici fin 2011 et que le programme d'investissement annoncé par GAO sera respecté permettant d'augmenter le gaz disponible.

En plus des quantités de gaz réservées aux membres fondateurs, respectivement 120, 5 et 5 MPC/J pour le Ghana, le Togo et le Bénin, les quantités supplémentaires seront disponibles à la vente sur un marché ouvert. Le Consultant propose l'hypothèse de répartir les quantités disponibles en fonction de la capacité des stations des pays concernés : Ghana (234MPC/J + 130 MPC/J), Benin (100 MPC/J) and Togo (100 MPC/J).

Cette répartition est illustrée dans le graphique ci-dessous.

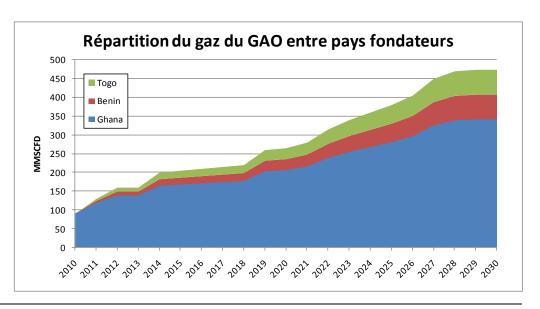


Figure 3 – Distribution du gaz du GAO entre les pays fondateurs

Gaz indigène

Une autre source de gaz considérée dans le plan directeur correspond aux réserves indigènes des pays producteurs. Le Nigéria, la Côte d'Ivoire et le Ghana disposent de réserve off-shore. Le Sénégal dispose de faibles réserves on shore.

Le Nigéria est de loin le pays qui dispose des plus grandes réserves de gaz en Afrique de l'ouest. La figure ci-dessous reprend les prévisions de production de gaz et la répartition du gaz par usage.

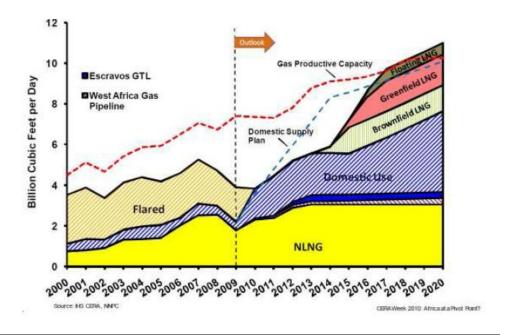


Figure 4 – Prévision de production et de consommation du gaz nigérian par usage

Le Ghana a récemment mis en production son premier champ pétrolier offshore (Jubilee Field) qui produit du gaz associé. Ce gaz associé sera disponible à la côte dans les environs de Domini à la fin 2011. Suite à d'importante découvertes de gisements de gaz et de pétrole ces dernières années, la société pétrolière du Ghana, GNPC, prévoit une augmentation importante de la production de gaz dans les années à venir allant de 80 MPC/J en 2011 jusque 300 à 500 MPC/J en 2026.

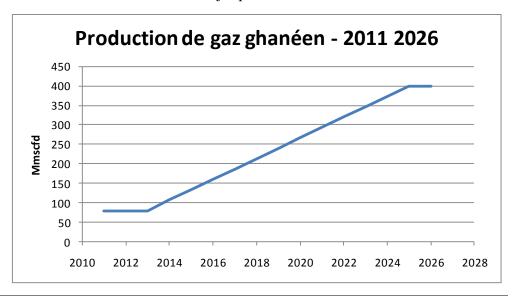


Figure 5 – Production de gaz indigène au Ghana – 2011-2026

Pour 2011, les capacités de production de gaz en Côte d'Ivoire sont évaluées à 205 Mpc/j. Trois champs pétroliers fournissent cette production à savoir : CNR (40 Mpc/j), FOCTROT (130 Mpc/j) et AFREN (35 Mpc/j). Par ailleurs, les restitutions du séminaire Mines et Energie organisé à Yamoussoukro les 10 et 11 juin 2011 font état de 750 Milliards de pc de réserve résiduelle de gaz et de 1500 Milliards de pc de réserve prouvée en Côte d'Ivoire

De manière conservative, le consultant a supposé qu'une quantité de 1000 milliards de pc pourrait être consommée par la Côte d'Ivoire à l'horizon de l'étude, dont 90% par la production électrique. Cette estimation prend en compte la nécessité d'investir dans l'accroissement de la capacité de production de gaz, ce qui pourrait être un frein à l'approvisionnement en gaz naturel de la Côte d'Ivoire

Les quantités de gaz produites au Sénégal sont aujourd'hui relativement marginales et resteront marginales dans les années à venir.

LNG

Certains pays tel que le Ghana envisagent à terme un approvisionnement en LNG dans leur mix énergétique.

Aucune limitation ne s'applique aux quantités de LNG disponibles pour le marché africain, la limitation principale est la non-existence d'infrastructures de regazéification de LNG. Il existe donc un coût d'entrée important pour permettre un approvisionnement en LNG.

A l'horizon 2025, la mise en service de l'infrastructure LNG ne se justifie néanmoins pas d'un point de vue purement économique pour l'alimentation des centrales de la région compte tenu des quantités limitées de gaz à exporter sur des distances relativement courtes.

3.1.2.2.2. Disponibilité du charbon

Aucune centrale au charbon d'importance n'est actuellement exploitée en Afrique de l'ouest.

Lors de l'optimisation du plan de production, une série de centrales au charbon sont considérées comme option d'investissement dans les pays où cette technologie est envisagée dans les plans nationaux de développement, à savoir le Sénégal et le Niger. Ces deux pays ont pour point commun peu de ressources hydroélectriques et gazières. De plus, le Niger possède des mines de charbon.

3.1.2.2.3. Potentiel solaire

L'Afrique de l'Ouest possède des régions particulièrement propices au développement de technologies solaires. La carte ci-après présente le potentiel des différents pays. S'il était décidé d'investir dans des technologies renouvelables en Afrique de l'Ouest, le Burkina Faso, le Mali et le Niger seraient de bons candidats pour l'énergie solaire CSP.

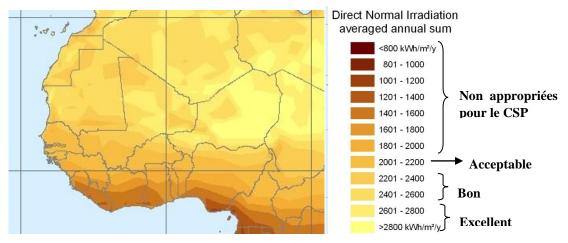


Figure 6– DNI et la latitude de la région d'intérêt (www.dlr.de)

3.1.2.2.4. Potentiel éolien

Le Consultant a utilisé le logiciel de cartographie de vent INTERFACE de VORTEX reconnu internationalement par le secteur éolien. Ce logiciel permet de modéliser les vents dans différentes parties du monde dans le but de conduire des études d'orientation.

Le modèle a été utilisé pour chacun des 14 pays de l'EEEAO afin d'identifier les régions de chaque pays présentant un potentiel éolien. La table ci-dessous représente les productibles moyens pour les meilleurs sites de chaque pays.

Resso	ources éoliennes - Po	tentiel éolien des m	eilleurs sites identitfiés (cf cartes)
Pays	Vitesse de vent moyenne (m/s)	Production (MWh/an/MW)	Commentaires
Senegal	6	2588	
Gambie	6	2588	
Guinée-Bissau	5	1717	Ce niveau de production est généralement trop faible pour motiver un investissement.
Guinée(Conakri)	8	4051	
Sierra Leone	trop faible	x	Développement éolien pas possible : faible vitesse de vent entre 3 et 3.5 m/s ou forêt dense ou montagne trop pentue
Libéria	trop faible	x	Développement éolien pas possible : faible vitesse de vent entre 3 et 3.5 m/s
Mali	7.2	3531	
Côte d'Ivoire	4.8	1565	Ce niveau de production est généralement trop faible pour motiver un investissement.
Ghana	6	2588	
Burkina Faso	6.5	2999	
Togo	5.8	2451	
Bénin	6.5	3006	
Nigéria	7.8	3933	
Niger	8	4051	

Table 8 – Potentiel éolien par pays (meilleurs sites identifiés)

3.1.3. Prévision de la demande

La première partie de l'étude de prévision de la demande consiste à estimer, en collaboration avec les sociétés d'électricité locales, la demande desservie et non desservie. Cette estimation se fait sur base de données historiques de charges, de statistiques de délestage et de temps moyen d'alimentation des charges.

La seconde partie consiste à analyser des prévisions de la demande, à court et moyen terme, élaborées par les sociétés d'électricité de chaque pays et/ou des scénarios établis par des consultants indépendants lors d'études antérieures

La troisième partie de la prévision de la demande consiste, sur base de paramètres macro-économiques (GDP, Population) et de programmes existant de résorption de la demande non desservie, d'établir trois scénarios encadrant l'évolution probable de la demande de chaque pays. Cette phase se base sur une prévision causale de la demande d'électricité établissant des corrélations entre les historiques de demande d'électricité et d'indicateurs macro-économiques. Deux approches complémentaires sont considérées: l'approche globale et l'approche semi-globale. L'approche globale analyse les corrélations entre la demande nationale d'un pays et des paramètres macro-économiques globaux (GDP, population, taux d'électrification...) tandis que l'approche semi-globale décompose la demande en secteurs d'activité et/ou zones géographiques.

Par ailleurs, la charge estimée dans les différents scénarios et pour les différents pays est la charge du système complet incluant les consommations des auxiliaires et les pertes.

Un scénario de base de la prévision de la demande a été établi. Il est utilisé dans le scénario de référence. Par ailleurs, un scénario de croissance plus faible est également présenté et sera exploité dans une variante du scénario de référence.

Sénégal

Entre 2000 et 2010 le taux de croissance annuel de la population au Sénégal a été estimé à 2.4% par le Fonds Monétaire International. On évalue aujourd'hui la population Sénégalaise à 13.4 millions.

Le PIB du Sénégal (à prix constant) a crû en moyenne de 4% par an sur ces 10 dernières années selon le Fonds Monétaire International. Dans le futur, la croissance annuelle du PIB devrait atteindre 4.5% à 5%.

Ces deux paramètres doivent être mis en balance afin de prendre en compte les différents types de consommateurs (domestique, industriel, tertiaire, tourisme...)

Par ailleurs, il est important de signaler et de prendre en compte les efforts accomplis par le Sénégal en termes de gestion de la charge. Le Sénégal a pris des actions importantes dans ce domaine et notamment le remplacement systématique des lampes à incandescence par des lampes basse énergie. 550 000 lampes ont été remplacées en 2010 (gain de 9MW estimé et confirmé par des mesures). Le plan prévoit à terme (fin 2012) le remplacement de 3.5 Md de lampes ce qui devrait entraîner une réduction de la charge de 70 MW.

Enfin, la prévision de la demande est réalisée en considérant les deux aspects que sont :

- l'accroissement de la charge du réseau interconnecté existant (étude de corrélation) ;
- le raccordement de centres isolés et l'électrification rurale (cfr étude SNC Lavalin).

	Scénario de base [GWh]	Scénario bas [GWh]	Scénario de base	Scénario bas [MW]
	[Ownj	[OVIII]	[MW]	ניייען
2011	2654	2561	456	440
2012	2991	2845	510	485
2013	3147	2966	532	502
2014	3319	3098	557	520
2015	3744	3428	629	575
2016	4311	3879	72 4	651
2017	4536	4050	761	680
2018	4774	4229	801	710
2019	5026	4417	844	741
2020	5306	4623	891	776
2021	5624	4853	944	815
2022	5933	5074	996	852
2023	6261	5306	1051	891
2024	6611	5549	1110	932
2025	6983	5806	1172	975

Table 9 – Prévision de la consommation du réseau interconnecté au Sénégal en accord avec l'étude SNC Lavalin de 2010

Gambie

La croissance de population en Gambie est évaluée par le Fonds Monétaire International à 2.6% par an. On estime la population de la Gambie à 1.7 millions en 2011.

Entre 2000 et 2005, la croissance du PIB de la Gambie variait beaucoup d'années en années (entre -3% et +7% de croissance annuelle selon le Fonds Monétaire International). Depuis 2006, la croissance du PIB s'est stabilisée autour de 5.4%, croissance qui est estimée constante pour le futur par ce Fonds.

En Gambie, la croissance de la demande est limitée par la disponibilité de l'offre. Pour cette raison, il est difficile d'établir une corrélation entre la croissance de paramètres socio-économiques et la croissance de la demande.

La révision de la prévision contient un plan de résorption de la demande non desservie sur 5 ans. Par ailleurs l'électrification des centres isolés est prise en compte.

	Scénario de base [GWh]	Scénario bas [GWh]	Scénario de base [MW]	Scénario bas [MW]
2011	239	219	50	46
2012	337	268	61	49
2013	414	317	70	54
2014	496	385	79	62
2015	586	414	94	66
2016	747	455	119	73
2017	771	496	123	79
2018	796	609	127	97
2019	821	658	131	105
2020	847	703	135	112
2021	879	722	141	115
2022	912	742	146	119
2023	945	763	151	122
2024	980	784	157	125
2025	1 017	806	163	129

Table 10 - Prévision de la demande en Gambie

Guinée Bissau

La croissance de population en Guinée Bissau est évaluée par le Fonds Monétaire International à 2.4% par an ces dix dernières années et est prévue à 2.9% par an pour les années à venir. On estime la population de la Guinée Bissau à 1.7 millions en 2011.

Depuis 2001, la croissance annuelle du PIB en Guinée Bissau a avoisiné 3% à l'exception de l'année 2003 où l'on a observé une croissance négative selon le FMI. Cette croissance devrait se poursuivre dans le futur.

Néanmoins, la croissance de la demande est limitée par la dégradation de la qualité de service. Pour cette raison, il est difficile d'établir une corrélation entre la croissance de paramètres socio-économiques et la croissance de la demande.

Dans le cadre de la révision du plan directeur de la région de l'Afrique de l'Ouest, il est important de considérer non seulement les clients actuellement connectés au réseau mais aussi les clients potentiels. Dès lors, la prévision de la demande à Bissau, la connexion de nouveaux clients et le raccordement de centres isolés sont pris en compte dans la prévision de la demande. Enfin, la demande minière est considérée.

	Scenario de base [GWh]	Scenario bas [GWh]	Mines [GWh]	Scenario de base [MW]	Scenario bas [MW]	Mines [MW]
2011	141	141		29	29	
2012	149	147		32	31	
2013	157	153		34	32	
2014	167	160		36	33	
2015	176	167		38	35	
2016	187	174	351	40	36	50
2017	233	182	351	50	38	50
2018	281	221	351	60	46	50
2019	332	263	351	71	54	50
2020	385	306	701	83	64	100
2021	441	352	701	95	73	100
2022	465	399	701	100	83	100
2023	491	418	701	106	87	100
2024	517	438	701	111	91	100
2025	545	458	701	117	95	100

Table 11 – Prévision de la demande en Guinée Bissau

Guinée

Entre 2000 et 2010 le taux de croissance annuel de la population en Guinée n'a pas cessé d'augmenter. Ce taux a été estimé par le Fonds Monétaire International à 1.9% par an au début des années 2000 et à 2.5% en 2010. On estime aujourd'hui la population Guinéenne à 10.6 millions.

Le PIB de la Guinée (à prix constant) a crû en moyenne de 2.95% par an sur ces 10 dernières années selon le Fonds Monétaire International.

Néanmoins, la croissance de la demande est limitée par la dégradation de la qualité de service. Pour cette raison, il est difficile d'établir une corrélation entre la croissance de paramètres socio-économiques et la croissance de la demande.

La prévision de la demande en Guinée est donc établie en prenant en compte les différents aspects que sont

- La résorption de la demande non desservie sur une période de 5 ans ;
- Le raccordement de centres isolés :
 - Le centre de Nzerekoré devrait être raccordé au réseau interconnecté grâce à la ligne CLSG;
 - Le centre de Kankan sera raccordé au réseau interconnecté à la mise en service de l'interconnexion Guinée-Mali;
 - Le centre de Faranah est situé à proximité du tracé de la ligne Linsan Fomi.

• Le secteur minier.

	Scenario de base [GWh]	Scénario bas [GWh]	Mines [GWh]	Scénario de base [GWh]	Scénario bas [GWh]	Mines
2011	608	608		139	139	
2012	760	687		164	148	
2013	934	760		190	155	
2014	1102	934		221	181	
2015	1563	1131		287	216	
2016	1718	1406	2643	302	247	377
2017	1766	1622	2682	311	286	383
2018	1819	1666	2723	321	293	389
2019	1875	1712	4864	330	302	694
2020	1937	1763	4936	340	309	704
2021	2032	1842	5011	357	324	715
2022	2101	1899	5086	369	334	726
2023	2170	1955	5162	381	343	737
2024	2238	2012	5239	393	353	748
2025	2308	2067	5318	405	363	759

Table 12 – Prévision de la demande en Guinée

Sierra Leone

Entre 2000 et 2005, la croissance de population au Sierra Leone a été estimée par le Fonds Monétaire International à 3.7% par an. Aujourd'hui la croissance de population est plutôt estimée à 2.6% par an. On estime la population du Sierra Leone à 6 millions en 2011.

Le PIB du Sierra Leone (à prix constant) a crû de manière spectaculaire ces 10 dernières années (plus de 9% par an en moyenne selon le Fonds Monétaire International).

La plupart des installations électriques ont été détruites durant la guerre civile au Sierra Leone. La reconstruction est en cours mais la plupart des régions situées à l'intérieur du pays n'ont pas accès à l'électricité.

Aujourd'hui, la demande est essentiellement urbaine (résidentielle et tertiaire). La consommation suit la disponibilité des moyens de production.

Dès lors, la prévision de la demande au Sierra Leone prend en compte les 3 aspects que sont :

- la croissance de la charge dans les régions déjà interconnectées ;
- l'électrification rurale ;
- la charge minière (considérée avec un facteur de charge de 80%).

	Scénario de base [GWh]	Scénario bas [GWh]	Mines [GWh]	Scénario de base [MW]	Scénario bas [MW]
2011	202	162	350	38	30
2012	267	214	350	50	40
2013	363	291	631	68	54
2014	486	389	911	91	73
2015	587	470	911	110	88
2016	715	572	1612	134	107
2017	789	631	2313	148	118
2018	828	663	3013	155	124
2019	868	694	4135	162	130
2020	907	726	5256	170	136
2021	957	766	5256	179	143
2022	1007	806	5256	188	151
2023	1057	846	5256	198	158
2024	1107	886	5256	207	166
2025	1157	926	5256	217	173

Table 13 – Prévision de la demande au Sierra Leone

Libéria

Aujourd'hui la croissance annuelle du PIB est très importante au Libéria. Elle tourne entre 5 et 12% par an selon le FMI.

La croissance de population au Libéria est estimée entre 3 et 4% selon les années par le FMI. Il y a aujourd'hui un peu moins de 4.5 millions d'habitants au Libéria.

Néanmoins, très peu de clients sont raccordés au réseau d'électricité. En 2009, 1645 consommateurs étaient connectés à 4 sous-réseaux isolés. La prévision de croissance de la charge est très élevée les premières années. Il ne s'agit pas d'une croissance naturelle de consommation mais bien d'un accroissement du nombre de clients connectés au réseau. A plus long terme, l'électrification rurale et l'accroissement espéré des paramètres macro-économiques sont les facteurs clés de la croissance de la charge.

Finalement, deux types de clients doivent être considérés :

- Les clients de Monrovia qui sont essentiellement résidentiels et commerciaux et pour lesquels le profil de charge est équivalent à celui des clients déjà raccordés ;
- Les consommateurs miniers qui viendront se connecter au réseau dans le futur et qui ont un facteur de charge important.

	Scénario de base [GWh]	Scénario bas [GWh]	Mines [GWh]	Scénario de base [MW]	Scénario bas [MW]	Mines [MW]
2011	47	34		9	6	
2012	105	57	33	20	11	5
2013	163	90	131	31	17	20
2014	226	125	657	43	24	100
2015	263	180	1 183	50	34	180
2016	279	226	1 840	53	43	280
2017	296	263	1 840	56	50	280
2018	314	275	1 840	60	53	280
2019	334	288	1 840	63	54	280
2020	355	301	1 840	68	58	280
2021	378	316	1 840	72	60	280
2022	402	332	1 840	77	64	280
2023	428	349	1 840	82	67	280
2024	455	367	1 840	87	70	280
2025	484	387	1 840	93	74	280

Table 14 - Prévision de la demande au Libéria

Mali

Entre 2000 et 2010, la croissance de population au Mali a été estimée par le Fonds Monétaire International à 2.3% par an, tandis que le recensement administratif à vocation d'état civil (RAVEC) du Mali estime la croissance à 3.6% par an. On estime aujourd'hui la population Malienne à 14.5 millions.

Le PIB du Mali (à prix constant) a crû en moyenne de 5% par an sur ces 10 dernières années selon le Fonds Monétaire International.

La croissance de population est le principal moteur de la croissance de consommation électrique résidentielle et tertiaire et la prévision de la demande est dès lors bien corrélée à l'évolution de la population.

Par ailleurs, la croissance actuelle de consommation sur le réseau électrifié contient l'électrification rurale. Pour le futur, le taux d'accroissement de l'électrification rurale est supposé identique à aujourd'hui.

Enfin, les centres isolés doivent être considérés car une part de ces centres sera raccordée au réseau interconnecté dans un futur proche. De plus les auto-producteurs Compagnie Malienne pour le Développement des Fibres Textiles (CMDT) et les mines d'or sont intéressés par un raccordement de leur charge au réseau interconnecté.

	Scenario de base [GWh]	Scénario bas [GWh]	Scenario de base [MW]	Scénario bas [MW]
2011	1 136	1 098	199	192
2012	1 232	1 174	216	206
2013	1 382	1 233	240	216
2014	2 111	1 294	346	227
2015	2 226	1 434	366	249
2016	2 896	2 144	464	352
2017	2 997	2 239	482	368
2018	3 153	2 930	509	470
2019	3 248	2 999	525	482
2020	3 398	3 085	550	497
2021	3 567	3 155	577	509
2022	3 7 4 0	3 279	605	529
2023	3 916	3 405	634	549
2024	4 097	3 534	663	570
2025	4 282	3 665	693	591

Table 15 - Prévision de la demande au Mali

Côte d'Ivoire

Entre 2000 et 2010 le taux de croissance de la population en Côte d'Ivoire a été estimé à près de 3% par an par le Fonds Monétaire International. On évalue aujourd'hui la population Ivoirienne à 22.7 millions.

Le PIB de la Côte d'Ivoire (à prix constant) a connu une période de stagnation voire de décroissance au début des années 2000. Il croit aujourd'hui d'environ 3% par an selon le Fonds Monétaire International.

Selon le bulletin de statistiques annuelles de la CIE, près de 55% de l'énergie produite est consommée par le secteur résidentiel. Le reste est consommé par les services privés et publics (15%) et les industries (30%). Par conséquent, en Côte d'Ivoire, l'accroissement de la population et l'augmentation du PIB doivent être mis en balance afin de prendre en compte les différents types de consommateurs.

Enfin, le secteur électrique a entrepris plusieurs projets pour l'électrification et le raccordement au réseau interconnecté des centres isolés. L'augmentation du niveau de desserte par le biais du raccordement progressif de centres isolés au réseau interconnecté devrait se traduire par une stabilisation, sinon une baisse de la production au niveau des centres isolés.

		6 ' ' '		<i>C ' : 1</i>
	Scenario de base	Scénario bas	Scenario de base	Scénario bas
	[GWh]	[GWh]	[MW]	[MW]
2011	6 005	5 859	968	945
2012	6 390	6 131	1 030	989
2013	6 799	6 410	1 096	1 034
2014	7 245	6 696	1 168	1 080
2015	7 731	6 990	1 247	1 127
2016	8 197	7 291	1 322	1 176
2017	8 680	7 600	1 400	1 225
2018	9 182	7 917	1 480	1 276
2019	9 703	8 241	1 564	1 329
2020	10 244	8 574	1 652	1 382
2021	10 807	8 915	1 742	1 437
2022	11 391	9 265	1 837	1 494
2023	11 998	9 624	1 934	1 552
2024	12 628	9 992	2 036	1 611
2025	13 284	10 369	2 142	1 672

Table 16 – Prévision de la demande en Côte d'Ivoire

Ghana

Entre 2000 et 2010 la croissance de population au Ghana a été estimée par le Fonds Monétaire International à 2.5% par an. On estime aujourd'hui la population Ghanéenne à 24 millions.

Le PIB du Ghana (à prix constant) a crû en moyenne de 5% par an sur ces 10 dernières années selon le Fonds Monétaire International.

Etant donné l'importance du client industriel VALCO, le Consultant propose de prévoir séparément la charge domestique et VALCO.

Les données historiques utilisées dans l'étude de corrélation de la charge domestique sont la population, le PIB, le PIB par habitant, l'énergie produite, l'énergie domestique consommée et l'énergie totale consommée. Le PIB par habitant a été utilisé pour approcher le revenu par habitant qui n'était pas disponible.

La prévision de la charge industrielle pour le cas de base repose sur l'hypothèse que deux lignes de production seraient exploitées chez VALCO en 2011. VALCO serait également en mesure de mettre en service trois lignes en 2013. Pour le scénario bas, l'hypothèse a été prise qu'une ligne de production serait exploitées chez VALCO en 2011. VALCO serait également en mesure de mettre en service deux lignes en 2013.

	Scenario de	base	Scénario b	nas	Scenario de	base	Scénario b	nas
	Consommation domestique	VALCO						
	[GWh]	[GWh]	[GWh]	[GWh]	[MW]	[MW]	[MW]	[MW]
2011	9 793	1 314	9 239	657	1 479	150	1 395	75
2012	10 421	1 314	9 652	657	1 573	150	1 457	75
2013	11 093	1 971	10 096	1 314	1 675	225	1 524	150
2014	11 764	1 971	10 522	1 314	1 780	225	1 590	150
2015	12 484	1 971	10 971	1 314	1 888	225	1 657	150
2016	13 252	1 971	11 440	1 314	2 007	225	1 730	150
2017	14 070	1 971	11 932	1 314	2 130	225	1 804	150
2018	14 941	1 971	12 44 6	1 314	2 262	225	1 881	150
2019	15 869	1 971	12 984	1 314	2 401	225	1 962	150
2020	16 857	1 971	13 547	1 314	2 550	225	2 047	150
2021	17 908	1 971	14 135	1 314	2 708	225	2 136	150
2022	19 027	1 971	14 750	1 314	2 877	225	2 228	150
2023	20 218	1 971	15 393	1 314	3 056	225	2 325	150
2024	21 485	1 971	16 065	1 314	3 247	225	2 426	150
2025	22 832	1 971	16 768	1 314	3 450	225	2 532	150

Table 17 – Prévision de la demande de charge au Ghana

Togo-Bénin

Au Benin, la croissance du PIB a été relativement constante ces dix dernières années avec un taux de croissance annuel situé entre 3% et 5% selon le FMI.

La croissance de population au Benin atteignait 3.3% par an jusque 2005 et 2.8% par an depuis 2006. On approche aujourd'hui les 10 millions d'habitants au Benin.

Au Togo, la croissance du PIB a été négative au début des années 2000. Depuis 2003, le PIB croît en moyenne de 2.5% par an.

Au Togo, la croissance annuelle de population avoisine 2.5%. Il y a actuellement un peu plus de 7 millions d'habitants au Togo selon les estimations du FMI.

Le secteur de l'électricité au Togo et au Benin est régi par l'Accord international et Code Benino-togolais de l'électricité signé entre les 2 états en 1968 et créant une communauté d'intérêt entre les 2 pays dans le domaine de l'énergie électrique.

Ce code conférait à la Communauté Electrique du Benin le monopole de la production, du transport et des importations/exportations de l'énergie électrique sur l'ensemble du territoire des deux états.

Néanmoins, l'accord international et Code bénino-togolais signé en 1968 a été révisé en 2003. Ce sont donc les dispositions du nouvel accord et Code de 2003 qui sont désormais en vigueur. Conformément aux dispositions de ce nouvel accord et Code bénino-togolais révisé de 2003, la CEB n'a plus le monopole de la production d'électricité. Le segment de la production d'électricité est ouvert aux producteurs indépendants mais la CEB demeure l'acheteur unique de leur production partout où leur réseau est présent.

Pour cette raison, les données d'énergie sont disponibles pour l'ensemble des deux états et non pour chacun indépendamment de l'autre. L'étude de la demande concerne donc la communauté Togo-Benin sur base des informations de la CEB.

Les cinq principaux clients de la CEB sont :

- Au Togo:
 - CEET: Compagnie Energie Electrique du Togo, société nationale de distribution d'électricité;
 - WACEM : West Africain Cement, producteur de ciment ;
 - SNPT: Société Nouvelle des Phosphates du Togo, producteur de phosphates.
- Au Benin:
 - SBEE: Société Béninoise d'Energie Electrique, société nationale de distribution d'électricité;
 - SCB Lafarge: Producteur de ciment.

Les gros clients industriels représentent environ 15% de la demande en électricité. Le reste de la demande est transmise aux sociétés de distribution Togolaise et Béninoise agissent en partie comme auto-producteurs étant donné qu'ils possèdent leurs propres moyens de production. La demande de ces clients est essentiellement résidentielle et tertiaire.

Dans le nord du Benin, la SBEE travaille en collaboration avec l'Agence Beninoise d'Electrification Rurale et de Maitrise de l'Energie (ABERME) pour développer le réseau 33kV entre localités et tenter de connecter les nouvelles charges et les endroits reculés. Ainsi, à court terme, le Togo et le Bénin (dans une moindre mesure) prévoient une croissance importante du nombre de clients raccordés au réseau interconnecté. Cette tendance se traduit par une forte croissance de la charge amorcée en 2009 et qui devrait se poursuivre jusque 2012 selon le document « Prévision des demandes horizon 2020 ».

Actuellement, le Bénin consomme plus de la moitié de la demande en électricité de la communauté. Néanmoins, on observe depuis plusieurs années un accroissement plus important de la charge au Togo qu'au Bénin. L'accroissement du nombre de clients raccordés au réseau interconnecté de la CEET devrait confirmer la tendance et le Togo devrait occuper une place de plus en plus importante dans la consommation d'électricité de la communauté.

Prenant en compte tous ces aspects, la prévision de la demande pour le Togo et le Bénin est présentée ci-après.

		Tog	0			Béri	nin	
	Scénario	Scenario	Scénario	Scenario	Scénario	Scenario	Scénario	Scenario
	de base	bas	de base	bas	de base	bas	de base	bas
	[GWh]	[GWh]	[MW]	[MW]	[GWh]	[GWh]	[MW]	[MW]
2011	1042	1035	170	169	1341	1333	219	217
2012	1294	1286	211	210	1469	1460	240	238
2013	1440	1405	235	229	1564	1526	255	249
2014	1571	1503	256	245	1697	1624	277	265
2015	1712	1608	279	262	1835	1723	299	281
2016	1873	1728	305	282	1968	1816	321	296
2017	2046	1856	334	303	2105	1910	343	311
2018	2230	1990	364	325	22 4 8	2006	366	327
2019	2426	2131	395	348	2396	2105	391	343
2020	2609	2257	426	368	2576	2229	420	364
2021	2801	2387	457	389	2766	2358	451	385
2022	3004	2523	490	412	2967	2492	484	407
2023	3217	2664	525	435	3178	2632	518	429
2024	3 44 2	2812	561	458	3400	2777	555	453
2025	3680	2965	600	484	3634	2928	593	477

Table 18 – Prévision de la demande au Togo et au Benin

Burkina Faso

Au début des années 2000, la croissance annuelle de population au Burkina Faso était supérieure à 3%. Depuis 2005, la croissance s'est ralentie et avoisine 2.3% par an selon le Fonds Monétaire International. On estime aujourd'hui la population Burkinabé à 15 millions.

Le PIB au Burkina Faso (à prix constant) a crû en moyenne de 5% par an sur ces 10 dernières années selon le Fonds Monétaire International.

Jusqu'en 2009, le Burkina Faso possédait 2 réseaux indépendants l'un de l'autre. Depuis 2009, ces deux réseaux sont interconnectés (réseau national interconnecté : RNI).

Au Burkina Faso, la croissance de la demande est fortement liée au taux d'électrification. Ce taux d'électrification est, pour sa part, corrélé à la richesse du pays. Pour cette raison, le principal paramètre macro-économique qui guide l'évolution de la consommation annuelle d'électricité est le PIB.

L'énergie non desservie dans les régions raccordées aux réseaux interconnectés était très faible jusqu'il y a quelques années. Néanmoins, elle a augmenté de manière considérable ces dernières années. Les principales causes des délestages sont :

- Un accroissement important de la demande et un raccordement massif de nouveaux clients au réseau interconnecté CRCO non compensé par un accroissement des moyens de production;
- Une indisponibilité accrue de l'interconnexion avec la Côte d'Ivoire.

Par ailleurs, l'électrification rurale est un souci majeur pour la SONABEL. L'électrification des nouveaux centres comprend une part de construction du réseau local et la construction d'une ligne de raccordement au centre électrifié le plus proche. L'ambition est d'atteindre un objectif d'électrification de 60% en 2015. La croissance actuelle de consommation sur le réseau électrifié prend en compte l'électrification rurale. Pour le futur, le taux d'accroissement de l'électrification rurale est supposé identique à celui d'aujourd'hui.

Finalement, un programme ambitieux de raccordement des centres isolés est prévu à court et moyen-terme.

La prise en compte de ces aspects mène à la prévision suivante :

	Scénario de base [GWh]	Scénario Bas [GWh]	Scénario de base [MW]	Scénario bas [MW]
2011	873	873	178	178
2012	934	929	190	189
2013	1 006	987	205	201
2014	1 087	1 048	222	214
2015	1 173	1 112	239	227
2016	1 265	1 179	258	240
2017	1 362	1 250	278	255
2018	1 466	1 324	299	270
2019	1 576	1 402	321	286
2020	1 694	1 484	345	303
2021	1 820	1 570	371	320
2022	1 953	1 661	398	338
2023	2 095	1 755	427	358
2024	2 247	1 855	458	378
2025	2 408	1 959	491	399

TABLE 19 – Prévision de la demande au Burkina Faso

Niger

L'analyse historique des données démographiques, économiques et des consommations électriques est l'étape préalable aux projections de la demande.

Entre 2000 et 2010 la croissance de population au Niger a été estimée par le Fonds Monétaire International à 3.1% par an. On estime aujourd'hui la population du Niger à 15.2 millions (source : INS-Niger).

Le PIB du Niger (à prix constant) a crû en moyenne de 4.8% par an sur ces 10 dernières années selon le Fonds Monétaire International.

Il y a 4 zones au Niger:

- La région du fleuve, autour de Niamey, alimentée par Birnin Kebbi au Nigéria ;
- Niger centre et est, alimentée par Kastina au Nigéria ;
- Niger est : zone 33 kV, alimenté depuis le Nigéria en 33 kV ;
- Zone nord, près d'Agadez.

Les trois premières sont alimentées par le Nigéria et sont synchrones. Il y a des centrales de secours (réserve froide). La quatrième est alimentée par une centrale au charbon.

Au Niger, la demande est essentiellement résidentielle et tertiaire. Le secteur résidentiel représente 47% de la consommation en électricité, tandis que les services représentent 13% de cette consommation. Par ailleurs, les industries représentent 39% de la charge, selon le rapport annuel 2007 du Système d'Information Energétique du Niger (SIE).

Par ailleurs, au Niger, le raccordement de nouveaux abonnés suite à la mise en œuvre de programme spécial du Président de la République et l'exécution du Projet de développement du réseau électrique interconnecté du Niger DREIN ont permis d'électrifier plusieurs localités rurales. La consommation d'électricité dans le réseau interconnecté a dès lors crû de manière importante ces dernières années. Il a été enregistré entre les années 2000 et 2008, une hausse de 88% de la demande en terme "d'énergie appelée" (524 GWh en 2008).

Enfin, la connexion d'une cimenterie de 20MW est considérée dans la région Niger Centre Est à partir de 2015.

		Sci	énario de b	ase				Scénario b	as	
	Fleuve	Niger Centre Est	Niger Est	Nord/ Agadez	Total	Fleuve	Niger Centre Est	Niger Est	Nord/ Agadez	Total
	[GWh]	[GWh]	[GWh]	[GWh]	[GWh]	[GWh]	[GWh]	[GWh]	[GWh]	[GWh]
2011	429	249	62	109	849	422	245	61	107	835
2012	461	267	67	117	912	446	258	65	113	882
2013	494	286	72	125	977	470	273	68	119	931
2014	528	306	76	134	1 044	496	287	72	126	980
2015	535	433	132	136	1 235	494	409	126	125	1 154
2016	569	452	141	144	1 306	518	423	133	131	1 205
2017	604	473	149	153	1 379	544	438	139	138	1 258
2018	6 4 0	493	158	162	1 454	570	453	146	144	1 312
2019	677	515	167	172	1 530	596	468	152	151	1 368 🚪
2020	715	537	177	181	1 609	623	484	159	158	1 424 🗟
2021	754	559	187	191	1 691	651	500	166	165	1 482 🚆
2022	794	583	197	201	1 774	679	516	174	172	1 541 5
2023	835	607	207	212	1 860	707	533	181	179	1 601 🚆
2024	877	631	217	223	1 948	737	550	188	187	1 662 🚆
2025	921	656	228	234	2 039	767	567	196	194	1 725 🛓
		Sci		Scénario b	as	forbi				

		300	enano de D	ase			Scenario D	<i>as</i>	9	
	Fleuve	Niger Centre Est	Niger Est	Nord/ Agadez	Total	Fleuve	Niger Centre Est	Niger Est	Nord/ Agadez	Total barties is
	[MW]	[MW]	[MW]	[MW]	[MW]	[MW]	[MW]	[MW]	[MW]	[MM]
2011	86	22	3	38	149	85	21	3	37	146 🖁
2012	93	23	4	41	160	90	22	4	39	146 154 163 to
2013	99	25	4	43	171	94	24	4	41	163 🚆
2014	106	26	4	46	183	99	25	4	44	
2015	113	48	5	49	215	105	46	4	46	172 und 181 190 Hand 190 190 190 190 190 190 190 190 190 190
2016	120	51	5	53	229	110	48	4	48	190
2017	127	54	5	56	243	115	51	5	50	199 🥇
2018	135	58	5	59	257	121	53	5	53	208 💆
2019	143	61	6	63	272	126	56	5	55	218 218 208 S S S S S S S S S S S S S S S S S S S
2020	151	64	6	66	287	132	58	5	58	228 🚡
2021	159	68	6	70	303	138	61	6	60	238 🖁
2022	168	72	7	73	319	144	63	6	63	238 2 248 <u>2</u> 248
2023	176	75	7	77	336	150	66	6	66	259 🕏
2024	185	79	7	81	353	156	69	6	68	270 💆
2025	195	83	8	85	370	163	72	7	71	270 280 ah

Table 20- Prévision de la demande au Niger

Nigéria

La croissance de population au Nigéria est évaluée par le Fonds Monétaire International à 2.7% par an. On estime la population nigériane à 160 millions en 2011.

Depuis 2001, la croissance annuelle du PIB au Nigéria a varié entre 5% et 10% à l'exception de l'année 2002 où l'on a observé une croissance exceptionnelle de 21% selon le FMI.

Etant donné la quantité d'énergie non desservie au Nigéria, il est difficile d'établir une étude de corrélation entre la demande et les paramètres macro-économiques sur les dix dernières années.

Depuis 2006, le parc de production n'a pas été renforcé au Nigéria. La résorption de la demande n'a dès lors pas pu être amorcée. Au contraire, l'énergie non desservie n'a fait qu'augmenter étant donné la décroissance constante de l'énergie produite depuis 2006.

PHCN (Power Holding Company of Nigeria) estime la demande à desservir au Nigéria en 2011 à 9 GW. Néanmoins, PHCN a des plans de développement du parc de production très ambitieux à court-terme qui permettront, s'ils sont réalisés, de résorber la demande non desservie très rapidement.

Prenant en compte les programmes d'investissement dans des moyens de production à court-terme afin d'estimer la résorption de la charge, la prévision de la demande desservie devrait suivre la tendance suivante, s'il l'on s'en réfère à la vision de PHCN.

	Scénario de base [GWh]	Scénario bas [GWh]	Scénario de base [MW]	Scénario bas [MW]
2011	39 102	25 524	6 376	4 162
2012	58 069	34 570	9 471	5 638
2013	61 321	43 624	10 000	7 114
2014	64 964	56 272	10 595	9 177
2015	68 830	65 178	11 225	10 629
2016	72 926	69 058	11 892	11 261
2017	77 258	72 339	12 599	11 797
2018	81 856	75 784	13 348	12 358
2019	86 717	79 383	14 142	12 946
2020	91 873	83 159	14 983	13 562
2021	98 732	88 365	15 874	14 207
2022	104 604	92 569	16 818	14 883
2023	110 821	96 969	17 818	15 591
2024	117 412	101 584	18 877	16 333
2025	124 393	106 415	20 000	17 110

Table 21 – Prévision de la demande au Nigéria

3.1.4. Données de génération

3.1.4.1. CARACTÉRISTIQUES ET COÛTS DES NOUVELLES TECHNOLOGIES

Turbines à Gaz et CC

Plusieurs pays de la CEDEAO disposent actuellement de turbines à gaz et de cycles combinés (CC) fonctionnant soit au gaz naturel (Côte d'Ivoire, Ghana, Nigéria) soit au combustible liquide (Togo, Ghana, Côte d'Ivoire, Sénégal...). La majorité des ces TG et CC sont bicombustibles permettant de brûler soit du gaz soit des combustibles liquides. Différents constructeurs sont représentés sur le continent (GE, Siemens, Alstom...) et différents tailles de turbines à gaz sont installées allant de 7.9 MW à 150 MW. De même, différents CC sont installés présentant des puissances variant de 50 MW (Sénégal) à 450 MW (Nigéria).

Lors de l'optimisation du plan de production une série de TG et CC dits standards sont considérés comme option d'investissement. Cette série de TG et de CC est proposée de façon à couvrir une large plage aussi bien en terme de taille que de technologie.

Les tailles proposées pour les cycles combinés (CC) sont 60 MW, 300 MW et 450 MW. Ces tailles correspondent aux ordres de grandeurs des standards utilisés dans certains pays de la CEDEAO comme le Sénégal (50MW), le Ghana (90MW et 300 MW) et le Nigeria ou la Côte d'Ivoire (projet) (450 MW). Aucune taille supérieure à 450 MW n'a été proposée pour des considérations systémiques. En effet, un CC de 450 MW présente un incident dimensionnant de 225 MW (1 TG et ½ TV) qui est conséquent vu la taille des réseaux ouest africains.

Les tailles proposées pour les TG correspondent aux TG des cycles combinés proposés à savoir : 45 MW, 100 MW et 150 MW.

En terme de technologie, la sélection des TG et CC a été faite de façon à faciliter la maintenance et à minimiser les coûts d'investissements plutôt qu'à maximiser le rendement. Il serait possible d'atteindre un ou deux points de rendement supplémentaires mais à un coût très élevé.

Pour les CC, deux méthodes de refroidissement sont proposées, le refroidissement par aéroréfrigérant et par prise d'eau directe. La prise d'eau directe permet d'augmenter de un à deux points le rendement global.

Le Consultant a utilisé le logiciel Thermoflow pour estimer les investissements et les coûts d'exploitation des différentes configurations. Ce logiciel simule le cycle thermodynamique de la centrale sur base des composants de la centrale choisis. Il renseigne ainsi de l'efficacité nette attendue et donc de la consommation spécifique. Les hypothèses principales peuvent être résumées ci-après :

- Température ambiante de 33°C;
- Toutes les TG et CC sont bicombustibles ;
- Toutes les CC ont une cheminée de by-pass pour permettre aux TG de tourner en cas d'indisponibilité des TV ;
- Les indisponibilités planifiées et fortuites ont été adaptées aux conditions locales.

Les combustibles modélisés dans le Thermoflow sont d'une part le gaz naturel et d'autre part le distillat #2. Ce distillat permet de représenter les performances de la centrale brûlant du diesel ou du LCO.

La table ci-dessous présente les données d'investissement des technologies TG et CC.

eerin
Engir
Tractebel
ф
property
ф
<u>.e</u>
document
is

					Scéna	rios Thermoflow				,
		1	2	3	4	5	6	7	8	9
Caractéristiques des centrales	Unités	CC (300MW) 2TG + 1TV	CC (300MW) 2TG + 1TV	CC (450MW) 2TG+1TV	CC (450MW) 2TG+1TV	CC (60MW) 1TG+1TV	CC (60MW) 1TG+1TV	TG (45MW)	TG (100MW)	TG (150MW)
Méthode de refroidissement		Aéroréfrigéré	directe par eau	Aéroréfrigéré	directe par eau	Aéroréfrigéré	directe par eau			
Fabricant TG + Modèle	-	GE 9E	GE 9E	Siemens SGT5- 2000E Ansaldo AE94.2	Siemens SGT5- 2000E Ansaldo AE94.2	Siemens SGT800	Siemens SGT800	ALSTOM GT8C2	Alstom GT11N2	Siemens SGT5-2000E
Fabricant TG + Modèle (seconde alternative)	-	Alstom GT11N2	Alstom GT11N2	GE 9C	GE 9C	ALSTOM GT8C2	ALSTOM GT8C2		GE 9E	
Puissance brute TG (conditions locales)	MW	110	110	145	145	39/38	39/38	49	101	146
Nombre de TG	-	2	2	2	2	1	1	1	1	1
Fabricant TV + Modèle (seconde alternative)	-	Siemens SST-900	Siemens SST-900	Siemens SST-900	Siemens SST-900	SST-300	SST-300	NA	NA	NA
Nombre de TV	-	1	1	1	1	1	1	NA	NA	NA
Puissance brute TV (conditions locales)	MW	123	138	155	173	15	18	NA	NA	NA
Puissance nominale totale (brute) GN / Distillat	MW	342/-	357/ -	445	463	54/53	57/55	49/47	101	146
Puissance nominale totale (nette) GN / Distillat	MW	332/ -	348/	432	452	53/51	55/54	48/46.5	100	144
Rendement net	%	49.1	51.5	49.3	51.6	47.9	50.2	32.1	31.6	33.1
Coût d'investissement	MUSD	334	320	404	386	73	72	41	69	88
Coût d'investissement / kW	USD/kw	977	896	908	834	1352	1263	837	683	603
Echéancier de paiement		16/34/50	16/34/50	16/34/50	16/34/50	20/50/30	20/50/30	50/50	50/50	50/50
(depuis signature de l'EPC ou EPCM)	%/an	sur 3 ans	sur 3 ans	sur 3 ans	sur 3 ans	sur 2.5 ans	sur 2.5 ans	sur 2 ans	sur 2 ans	sur 2 ans
durée de vie	yearsans	25	25	25	25	25	25	25	25	25
Coût d'exploitation et maintenance - fixe	USD/kW	34	31	32	29	38	37	8.4	7	6
Coût d'exploitation et maintenance - variable	USD/MWh	1.83	1.68	1.71	1.57	2.03	2.00	2.51	2.05	1.81
Combustible 1		Gaz naturel	Gaz naturel	Gaz naturel	Gaz naturel	Gaz naturel	Gaz naturel	Gaz naturel	Gaz naturel	Gaz naturel
Consommation spécifique - Combustible 1	kJ/kWh	7331	6996	7247	6930	7522	7169	11225	11404	10869
Combustible 2	1	Distillat #2	Distillat #2	Distillat #2	Distillat#2	Distillat #2	Distillat #2	Distillat #2	Distillat #2	Distillat #2
Consommation spécifique - Combustible 2	kJ/kWh	7379	7039	7293	6970	7601	7240	11435	11620	11014
Emission CO2	T/h	134	134	173	173	22	29	30	62	86
Emission S02 (pour les distillats)	T/h	0 563	0 563	0.727	0.727	0.92	0.92	0.125	0/0.263	0/0.362
Emission Nox (sans SCR)	ppmV (sec)	15	15	25/?	25/?	15/42	15/42	25/?	25/42 (hum)	25/?
Indisponibilité planifiée (maintenance)	pu	7%	7%	7%	7%	7%	7%	7%	7%	7%
Indisponibilité fortuite	pu	8%	8%	8%	8%	8%	8%	8%	8%	8%

Table 22- TG et CC - données d'investissement

Charbon

Les investissements décidés planifiés et envisagés au Niger et au Sénégal concernent des petites unités (125MW au Sénégal et 4*50 MW au Niger).

En l'absence de données concrètes sur la technologie utilisée, des données d'investissement standard ont été proposées. La sélection des unités a été faite de façon à faciliter la maintenance et à minimiser les coûts d'investissements plutôt qu'à maximiser le rendement. Il serait possible d'atteindre un ou deux points de rendement supplémentaires mais à un coût très élevé.

De manière générale, deux technologies seraient envisagées :

- La technologie « Lit Fluidisé Circulant »(LFC) ;
- La technologie « Charbon Pulvérisé » (CP).

Le Consultant a utilisé le logiciel Thermoflow pour estimer les investissements et les coûts d'exploitation des différentes configurations. Ce logiciel simule le cycle thermodynamique de la centrale sur base des composants de la centrale choisis. Il renseigne ainsi de l'efficacité nette attendue et donc de la consommation spécifique. Les hypothèses principales peuvent être résumées ci-après :

- Température ambiante de 33°C;
- Les indisponibilités planifiées et fortuites ont été adaptées aux conditions locales.

La table ci-dessous présente les données d'investissement des technologies au charbon. Etant donné la taille des investissements proposés pour le Sénégal et le Niger, c'est la technologie CFB qui est retenue.

	-	Scénarios Thermoflow		
		10	11	
Caractéristiques des centrales	Unités	Coal (125MW) Type: CFB	Coal (250MW) Type: PC	
Nombre de TV	-	1	1	
Puissance brute TV (conditions locales)	MW	125	250	
Puissance nominale totale (brute)	MW	125	250	
Puissance nominale totale (nette)	MW	116	230	
Rendement net	%	37.6	39	
Coût d'investissement	MUSD	314	540	
Coût d'investissement / kW	USD/kw	2512	2160	
Echéancier de paiement		16/32/32/20	16/32/32/20	
(depuis signature de l'EPC ou EPCM)	%/an	sur 3.3 ans	sur 3.3 ans	
durée de vie	an	35	35	
Coût d'exploitation et maintenance - fixe	USD/kW	75	65	
Coût d'exploitation et maintenance - variable	USD/MWh	3.14	2.7	
Combustible 1		Coal	Coal	
Consommation spécifique - Combustible 1	kJ/kWh	9574	9231	
Combustible 2		Oil, biomass	Oil, biomass	
Consommation spécifique - Combustible 2	kJ/kWh			
Emission CO2	T/h	106	206	
Emission S02 (pour les distillats)	T/h	0,053	0,103	
Emission Nox avec SCR	ppmV (sec)	97 (SNCR)	96 (SNCR)	
Indisponibilité planifiée (maintenance)	pu	7%	7%	
Indisponibilité fortuite	pu	8%	8%	

Table 23 - Centrale au charbon - Données d'investissement

Diesel rapide et semi-rapide

Une grande majorité des pays de la CEDEAO utilise des groupes diesels rapides ou semi-rapides fonctionnant au diesel (DDO) ou au fuel lourd (HFO). Ces groupes présentent des puissances variant de moins d'1 MW à environ 20 MW.

Les avantages de ces groupes diesel sont leur coût d'investissement relativement faible, la rapidité de construction et la facilité de stockage et d'approvisionnement des combustibles. Leurs gros désavantages sont les coûts élevés des combustibles, leur consommation spécifique relativement élevée et les maintenances coûteuses.

Lors de l'optimisation du plan de production une série de groupes diesels rapides et semi-rapides dits standards sont considérés comme option d'investissement. Cette série de groupes diesels est proposée de façon à couvrir une large plage aussi bien en terme de taille que de technologie.

La table ci-dessous présente les données d'investissement des technologies diesel.

Caractéristiques des centrales	Unités	HFO 10MW	HFO 20MW	DDO 10MW
Puissance nominale totale (nette)	MW	10	20	10
Rendement net	%	40%	40%	36%
Coût d'investissement	MUSD	14.5	27	10.7
Coût d'investissement / kW	USD/kw	1450	1350	1070
Echéancier de paiement		50%/50%	50%/50%	50%/50%
(depuis signature de l'EPC ou EPCM)	%/an	sur 2 ans	sur 2 ans	sur 2 ans
durée de vie	an	20	20	20
Coût d'exploitation et maintenance - fixe	USD/kW	16.8	16.8	8.4
Coût d'exploitation et maintenance - variable	USD/MWh	7.1	7.1	10.1
Combustible 1		HFO	HFO	DDO
Consommation spécifique - Combustible 1	kJ/kWh	9000	9000	10000
Emission CO2	kg/MWh	712.8	712.8	741
Emission S02	kg/MWh	4.1	4.1	0.9
Indisponibilité planifiée (maintenance)	pu	7%	7%	7%
Indisponibiité fortuite	pu	10%	10%	10%

Table 24 – Diesel – Données d'investissement

Biomasse

Certains pays tels que le Sénégal, le Libéria et le Sierra Leone envisagent la biomasse dans leur mix énergétique

En l'absence de données concrètes sur la technologie utilisée, des données d'investissement standard ont été proposées. La sélection des unités a été faite de façon à faciliter la maintenance et à minimiser les coûts d'investissements plutôt qu'à maximiser le rendement. Il serait possible d'atteindre un ou deux points de rendement supplémentaires mais à un coût très élevé.

La table ci-dessous présente les données d'investissement des technologies utilisant la biomasse. Etant donné la taille des investissements proposés pour le Sénégal, le Libéria et le Sierra Leone, c'est la technologie CFB qui est retenue. Selon la taille des projets, les données sont variables.

Caractéristiques des centrales	Unités	Centrale biomasse (100MWe)	Centrale biomasse (40MWe)	Centrale biomasse (5MWe)
Fabricant + Modèle	-	CFB Boiler	CFB Boiler	Grate Furnace
Nombre de TV	-	1	1	1
Puissance brute TV (conditions locales)	MW	100	40	5
Puissance nominale totale (brute)	MW	100	40	5
Coût d'investissement	MUSD	324	136	34
Echéancier de paiement	%/an	Y0-3: 45% Y0-2: 25% Y0-1: 10% Y0 : 20%	Y0-3: 45% Y0-2: 25% Y0-1: 10% Y0 : 20%	Y0-1: 55% Y0 : 45%
Coût d'investissement / kW durée de vie	USD/kW an	3240 30	3400 30	6800 30
Coût d'exploitation et maintenance – fixe	USD/kW/an	129.6	136	272
Coût d'exploitation et maintenance – nixe	USD/MWh	inclus	inclus	inclus
Combustible 1	USD/MWII	Copeaux de bois	Copeaux de bois	Copeaux de bois
Consommation spécifique - Combustible 1	kJ/kWh	9600	9600	15000
Emission CO2	mg/Nm3	0	0	0
Emission S02 (pour les distillats)	mg/Nm3	-	-	-
Emission Nox sans SCR	mg/Nm3	250	250	250
Emission Nox avec SCR	mg/Nm3	125	125	125
Indisponibilité planifiée (maintenance)	pu	0.07	0.07	0.07
Indisponibilité fortuite	pu	0.07	0.08	0.08
Particularités	F	0.00	0.00	0.00
- Energie disponible moyenne	GWh	745	300	37
- Consommation de copeaux	t/an	510 000	204 000	40 000
- Prix du combustible sans transport	USD/GJ	3.6	3.6	3.6
- Prix du combustible avec transport (500km)	USD/GJ	5.1	5.1	5.1

Table 25 – Unité de production Biomasse – Données d'investissement

Hydroélectricité

Un des objectifs de ce plan directeur ainsi que des plans directeurs nationaux de la plupart de pays de l'Afrique de l'Ouest est la mise en valeur des ressources hydro-électriques non encore exploitées. Ces ressources sont très abondantes et principalement distribuées dans les bassins des fleuves Sénégal, Niger, Gambie et Konkouré.

Ces projets sont pris en considération comme options d'investissement lors de l'optimisation du plan de production et sont ainsi mis en compétition avec les autres technologies présentées dans ce chapitre.

Néanmoins, il est à noter que les projets proposés dans les pays de la zone B ne pourront pas raisonnablement être tous mis sur pied à l'horizon 2025 même si beaucoup se révèlent rentables d'un point de vue économique. En effet, les limites financières des pays, les impacts environnementaux, et les difficultés d'accessibilité sont autant de freins au développement massif de l'hydroélectricité. De plus, un certain nombre de ces projets pourraient être dédicacés à l'alimentation locale du secteur minier.

Dans les deux premiers scénarios (sans limites d'interconnexion et développement national), aucune contrainte n'a été imposée au modèle afin de prendre ces aspects en compte.

Néanmoins, afin d'obtenir un cas de référence qui puisse servir de base à l'élaboration d'une liste d'investissement prioritaires, quelques contraintes ont été imposées reposant sur les limites évoquées ci-avant et limitant les investissements disproportionnés dans les pays possédant de nombreuses ressources hydroélectriques.

Les caractéristiques des projets ont été déterminées sur base des dernières études disponibles pour chaque ouvrage. Lorsque certaines données telles que le coût d'investissement ou le productible annuel n'étaient pas disponibles, le consultant a proposé des valeurs sur base de l'emplacement du site, du type d'ouvrage et de la puissance de groupes. Ces valeurs sont reprises en italique.

Noeud	NomCentrale	Statut	Capacité Installée	Coût total	Coût spéc. Invest.	Energie moyenne	Energie garantie
			[MW]	[M\$]	[\$/kW]	[GWh/an]	[GWh/an]
Burkina Faso	Bougouriba	Candidat	12	122	10125	30	22.8
Burkina Faso	Bagre Aval		14	106	7536	36	27.36
Côte d'Ivoire	Soubré	Candidat	270	620	2296	1116	848
Côte d'Ivoire	Gribo Popoli	Candidat	112	364	3249	515	391
Côte d'Ivoire	Boutoubre	Candidat	156	401	2570	785	597
Côte d'Ivoire	Louga	Candidat	280	1330	4751	1330	1011
Côte d'Ivoire	Tiassale	Candidat	51	207	4068	215	163
Côte d'Ivoire	Aboisso Comoe	Candidat	90	248	2756	392	298
Ghana	Juale	Candidat	87	372	4276	405	308
Ghana	Pwalugu	Candidat	48	209	4361	184	140
Ghana	Daboya	Candidat	43	241	5611	194	147
Ghana	Hemang	Candidat	93	304	3270	340	258
Ghana	Kulpawn	Candidat	36	345	9587	166	126
Guinée	Amaria	Candidat	300	377	1256	1435	1057
Guinée	Bonkon Diaria	Candidat	174	211	1213	451	315
Guinée	Diaraguela	Candidat	72	178	2472	400	298
Guinée	Fetore	Candidat	124	160	1290	322	232
Guinée	Fomi	Candidat	90	156	1728	374	320
Guinée	Frankonedou	Candidat	36	83	2306	173	140
Guinée	Grand Kinkon	Candidat	291	298	1024	720	618
Guinée	Gozoguezia	Candidat	48	110	2292	259	200
Guinée	KassaB	Candidat	135	214	1585	528	467
Guinée	Kaleta	Décidé	240	267	1114	946	228
Guinée	Kogbedou	Candidat	14	71	5083	111	99
Guinée	Kouravel	Candidat	135	185	1370	350	240
Guinée	Kouya	Candidat	86	156	1814	334	315
Guinée	Lafou	Candidat	98	128	1306	255	210
Guinée	Morisakano	Candidat	100	260	2600	523	438
Guinée	Nzebela	Candidat	48	94	1958	225	210
Guinee	Poudalde	Candidat	90	150	1667	342	319
Guinée	Souapiti	Candidat	515	692	1344	2518	2403
Guinée	Tiopo	Candidat	120	295	2458	590	480
Liberia	MtCoffee (+via)	Décidé	66	383	5803	435	344
Liberia	St Paul 1B	Candidat	78	244	3123	512	389
Liberia	St Paul 2	Candidat	120	375	3123	788	599
Liberia	St Paul V1	Candidat	132	412	3123	569	433
Liberia	Mount Coffee (+V1)	Candidat	66	234	3546	285	216
Liberia	St Paul 1B (+V1)	Candidat	65	203	3123	280	213
Liberia	St Paul 2 (+ V1)	Candidat	100	312	3123	431	328
Liberia	Lofa River	Candidat	29	312 141	4861	125	95
Liberia	St John River	Candidat	67	287	4280	289	220
Libéria	CestosRiver	Candidat	41	234	5707	177	480

Table 26 – Projets hydroélectriques– Données d'investissement (1/2)

Noeud	NomCentrale	Statut	Capacité Installée	Coût total	Coût spéc. Investissement	Energie moyenne	Energie garantie
			[MW]	[M\$]	[\$/kW]	[GWh]	[GWh]
Mali	Kénié	Candidat	34.4	126	3671	199	163
Mali	Taoussa	Candidat	25	209	8340	108	82
Mali	Sotuba 2	Candidat	6	48	7943	39	37
Mali	Markala	Candidat	10	40	4025	53	40
Niger	Kandadji	Décidé	130	405	3115	629	478
Niger	Gambou	Candidat	122.5	577	4712	528	402
Niger	Dyodyonga	Candidat	26	60	2293	112	85
Nigeria	Mambilla	Candidat	2600	4000	1538	11214	8522
Nigeria	Zungeru	Candidat	700	1077	1538	3019	2295
Sierra Leone	Bumbuna II	Candidat	350	520	1486	1245	996
Sierra Leone	Goma II	Candidat	6	40	6709	31	1
Sierra Leone	Benkongor	Candidat	200	490	2447	1164	959
Sierra Leone	Kuse II	Candidat	91.8	235	2561	680	549
Sierra Leone	Kambatibo	Candidat	52.5	164	3120	269	212
Sierra Leone	Bitmai I	Candidat	52.5	164	3120	268	212
Sierra Leone	Bitmai II	Candidat	36.6	130	3543	250	211
Togo	Adjarala	Décidé	147	333	2265	366	237
Togo	Tététou	Candidat	50	159	3174	148	112
Benin	Kétou	Candidat	160	337	2105	490	372
Burkina /Ghana	Noumbiel	Candidat	60	286	4767	203	154
C Iv /Liberia	Tiboto	Candidat	225	<i>578</i>	2570	1200	912
Libéria/S.L	ManoRiver	Candidat	180	473	2625	795	612
OMVG Guinée	Digan	Candidat	93.3	112	1200	243	24
OMVG Guinée	FelloSounga	Candidat	82	285	3474	333	286
OMVG Sénégal	Sambangalou	Décidé	128	433	3386	402	208
OMVG G. Bissau	Saltinho	Candidat	20	83	4273	82	24
OMVS Guinée	Balassa	Candidat	181	171	945	470	401
OMVS Guinée	Boureya	Candidat	160	373	2331	717	455
OMVS Guinée	Diaoya	Candidat	149	332	2228	581	389
OMVS Guinée	Koukoutamba	Candidat	281	404	1438	858	507
OMVS Guinée	Tene I	Candidat	76.4	122	1597	199	129
OMVS Mali	Felou	Décidé	60	170	2828	350	320
OMVS Mali	Gouina	Décidé	140	328	2343	565	227
OMVS Mali	Gourbassi	Candidat	21	91	4311	104	79
OMVS Mali	Badoumbe	Candidat	70	197	2818	410	312
OMVS Mali	Bindougou	Candidat	49.5	158	3185	289	220
OMVS Mali	Moussala	Candidat	30	114	3801	175	133

Table 27 – Projets hydroélectriques– Données d'investissement (2/2)

Caractéristiques des centrales	Unités	Hydro-électrique
durée de vie	an	50
Coût d'exploitation et maintenance - variable	USD/MWh	2
Coût d'exploitation et maintenance - fixe	%.	Inclus dans variable
Indisponibilité planifiée (maintenance)	pu	4%
Indisponibilité fortuite	pu	2%

TABLE 28 – Projets hydroélectriques– Paramètres standards

Energie Solaire

Pour les technologies CSP, l'irradiation directe normale (DNI en kWh/m²/y) est un critère essentiel pour définir le potentiel des sites. Par conséquent, dans la région d'intérêt, 4 gammes de DNI ont été définies:

Non approprié < 2.000 kWh/m²/a

Acceptable 2.001 – 2.200 kWh/m²/a
 Bon 2.201 – 2.600 kWh/m²/a
 Excellent >2.600 kWh/m²/a

Cette échelle est spécifique à la région et est définie sur la base des données DNI disponibles pour la région.

Un autre paramètre clé est la latitude qui influe sur les pertes de l'unité. Les latitudes considérées sont de 15 °, 20 ° et 25 °.Les latitudes moins de 10 ° ne sont pas considérées car elles sont classées comme «non appropriées» dans l'échelle de DNI.

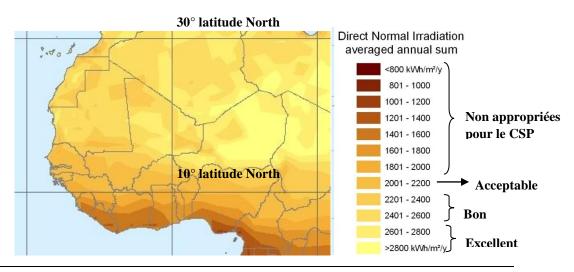


Figure 7 – DNI et la latitude de la région d'intérêt (www.dlr.de)

En utilisant Andasol3 comme unité typique (50 MW avec 7.5h de stockage en Espagne), nous obtenons les données de la Table 26 pour une DNI de 2400 kWh/m2/a et une latitude de 20 ° Nord. Les coûts considérés à la Table 26 sont des coûts de 2009/2010.

Caractéristiques des centrales	Unités	Solaire thermique (CSP)
Puissance nominale (conditions locales)	MW	50
Energie disponible moyenne	GWh	206
Echéancier de paiement	%/an	70% Y0-1
		30% Y0
Coût d'investissement	MUSD	507
Coût d'investissement / kW	USD/kW	10138
durée de vie	an	25
Coût d'exploitation et maintenance - fixe	USD/kW/an	254
Coût d'exploitation et maintenance - variable	USD/MWh	-
Rendement	%	17%
Indisponibilité planifiée (maintenance)	pu	2%
Indisponibilité fortuite	pu	-
Particularités		
- stockage	h	7.5
- DNI	kWh/m²/y	2400
- Nbre de boucles		152
- Surface des miroirs	m²	497000

Table 29 – Unité de production Solaire CSP– Données d'investissement

Des données classiques d'investissement pour une installation photovoltaïque en Europe avec un facteur d'utilisation adapté à la région sont présentées à la Table 27. Les coûts considérés à la Table 27 sont des coûts de 2010/2011.

Caractéristiques des centrales	Unités	Solaire PV
Puissance nominale (conditions locales)	MW	1
Energie disponible moyenne	GWh	2
Echéancier de paiement	%/an	100% Y0
Coût d'investissement	MUSD	3.66
Coût d'investissement / kW	USD/kW	3660
durée de vie	an	20
Coût d'exploitation et maintenance - fixe	USD/kW/an	20
Coût d'exploitation et maintenance - variable	USD/MWh	-
Rendement	%	15%
Indisponibilité planifiée (maintenance)	pu	0.50%
Indisponibilité fortuite	pu	0.75%
Particularités	-	
- stockage	h	
- DNI	kWh/m²/y	
- Nbre de boucles	- ''	
- Surface des miroirs	m²	

Table 30 – Unité de production Solaire PV – Données d'investissement

Energie éolienne

Deux technologies d'éoliennes sont proposées comme option d'investissement pour le plan directeur. La première technologie correspond à l'état de l'art actuel en termes d'éoliennes. Il s'agit de turbine d'environ 2 MW proposées par tous les fabricants (GE, REPower, Vestas, Gamesa, Siemens, Nordex, Enercon...) Cette technologie est actuellement la plus répandue.

La seconde technologie proposée consiste en une structure plus petite, plus flexible qui peut plus facilement être installée dans des régions distantes où les éoliennes traditionnelles sont difficiles à installer. Typiquement, cette technologie est proposée par la société Vergnet.

Caractéristiques des équipements	Unités	Eolienne (25x2MW)	Eolienne (50x1MW)
Puissance nominale	MW	50	50
Energie disponible moyenne	GWh	100	100
Coût d'investissement	MUSD	74	88
		70% Y0-1	70% Y0-1
Echéancier de paiement	%/an	30% Y0	30% Y0
Coût d'investissement / kW	USD/kW	1485	1750
durée de vie	an	20	20
Coût d'exploitation et maintenance - fixe	USD/kW/an	17	17
Coût d'exploitation et maintenance - variable	USD/MWh	9.5	9.5
Indisponibilité planifiée (maintenance)	pu	1%	1%
Indisponibiité fortuite	pu	4%	4%

Table 31 – Eoliennes – Données d'investissement

3.1.4.2. PLANS DE DÉVELOPPEMENT DU PARC DE PRODUCTION

Pour chaque pays, les plans de développement du parc de production national discutés lors des missions de collecte de données et les grands projets internationaux sont considérés.

Pour chaque état membre, une liste des unités de production électriques a été établie, distinguant les unités existantes des unités futures (décidées ou candidates):

- Unités existantes: unités de production ayant été mises en service avant mars 2011:
- Unités décidées: unités dont la construction est en cours ou a été décidée pour une date précise de mise en service (études terminées et financement assuré);
- Unités candidates: unités pour lesquelles les études ne sont pas encore terminées ou pour lesquelles le financement n'a pas encore été trouvé.

Parmi les projets proposés par les pays, ceux qui sont décidés ne sont pas remis en cause dans le plan directeur de production. Par contre, les projets candidats font partie des options d'investissement optimisées par le logiciel.

En plus des projets envisagés par les pays, une série d'investissements «standards» sont également proposés comme option d'investissement. Les turbines à gaz et les cycles combinés «standards» proposés permettent de couvrir une large plage aussi bien en termes de taille que de technologie.

Sénégal

- Projets décidés:
 - La centrale hydroélectrique de Félou dans le cadre de l'OMVS. C'est une centrale de 60 MW et, selon les accords avec l'OMVS, le Sénégal disposera de 25% du productible. Cela assurera 15 MW supplémentaires à partir de 2013 à la condition que le réseau de l'OMVS permette le transfert de cette capacité supplémentaire;
 - Dans le cadre de l'OMVS également, la centrale de Gouina, pour 140 MW est prévue en 2017. La part du Sénégal est de 25% soit 35 MW;
 - Par l'OMVG, le Sénégal devrait bénéficier de 40% du productible de la centrale hydroélectrique de Sambangalou en 2017, soit 51MW;
 - Une centrale au charbon sur le site de Sendou (875 MW au total) dès 2016;
 - La location d'une unité au diesel de 50 MW en 2011 pour une durée de un an, avec possibilité de louer 100MW supplémentaires;
 - La réhabilitation des groupes C3 et C4 de Bel Air (+30MW en 2011 et 25MW en 2012);

- L'extension du groupe C6 de Bel-air: 2 x 15 MW en 2012;
- La mise en service de Koudi II (2 x 15 MW) en 2012;
- Une unité Biomasse de 2 x 15 MW à Ross Behtio en 2014. Energie produite estimée par an: 236 GWh.

• Projets candidats:

- L'installation d'unités mobiles au HFO de 40 MW à Tobin (avec option pour 30MW supplémentaires) et 70MW dans le port de Bel-Air (une seconde barge de 70MW est envisagée) en 2012;
- Les unités suivantes sont planifiées pour les centres isolés:
 - 2012: 2 x 5 MW HFO à Ziguinchor qui permettra d'arrêter les locations de puissance dans cette région;
 - 2012: 2 x 4 MW HFO à Tambacounda.
- Un site éolien de 125 MW dès 2014:
- Un parc solaire de 7.5 MW à Ziguinchor;
- Plusieurs unités diesel de 30 ou 60 MW pourraient être construites par des producteurs indépendants.

Gambie

• Projets décidés:

- La remise en service complète des unités de Kotu;
- La réhabilitation de l'unité G6 de Kotu en 2011;
- La réhabilitation de l'unité G2 (HFO) à Kotu (3 MW) en 2012;
- L'installation de 2 nouvelles unités diesel de 6.5 MW fonctionnant au HFO, à la centrale de Brikama fin 2011;
- L'installation de 9 MW supplémentaires à Brikama fonctionnant au HFO fin 2011également;
- 4 unités de 2 MW fonctionnant au HFO pour les centres isolés ;
- Construction d'une ferme éolienne de 1 MW àTanji en 2012.

Region	Charge actuelle	Nouvelles Unités	Connexion à Banjul
Farafenni & Mansa Konko	1.8 MW	2 MW en 2013	2013
Bansang	0.6 MW	2 MW en 2013	2014
EASSAN / Barria	0.46 MW		OMVG
KEREWAN	0.22 MW	2 MW en 2013	
BASSE	1.8 MW	2 MW en 2013	2014
KANIR	0.18 MW		

Projets candidats:

- L'extension de la centrale de Brikama à 2 x 10 MW 2013;
- Un projet de 4MW éoliens supplémentaires en 2014;
- Par l'OMVG, la Gambie devrait bénéficier de 12% du productible de la centrale hydroélectrique de Sambangalou en 2017, soit 15 MW;
- Un projet solaire de 10MW;
- L'extension du parc éolien de 6 MW;
- Un cycle combiné de 60MW après 2014;
- La seconde phase des projets de l'OMVG.

Guinée Bissau

- Projets décidés :
 - La capacité installée en ce moment est de 5.6 MW environ. Mais la capacité disponible en continu est de 5 MW (2.5 MW EAGB et 2.5 MW de location);
 - 2 groupes de 2.5MW financés par la banque mondiale et installés en 2012.
 Dès la mise en service de ces unités, les contrats de location de 2.5MW seront rompus;
 - Financement de 15 MW HFO pour la ville de Bissau supporté par l'UEMOA et la BOAD. Prévu en plusieurs étapes de 5 MW entre 2012 et 2014;
 - Réhabilitation de la centrale d'EAGB à Bissau (2MW);
 - Réhabilitation de la centrale de Bafatà (5MW);
 - Mise en service de la centrale de Buba (5MW);
 - Par l'OMVG, la Guinée Bissau devrait bénéficier de 8% du productible de la centrale hydroélectrique de Sambangalou en 2017, soit 10 MW;
 - Il est par ailleurs supposé que lorsque les moyens de production deviendront suffisants, les auto-producteurs cesseront d'utiliser leurs propres moyens de production.
- Projets candidats
 - Centrale HFO de 55MW.

Guinée

- Projets décidés :
 - 106 MW par le projet de centrale thermique de Manéah fonctionnant au HFO. La mise en service est supposée intervenir en 2014 et 2015;
 - Mise en service de 100MW supplémentaires à Tombo ;
 - La centrale hydroélectrique au fil de l'eau de Kaleta qui comportera trois unités de 80 MW et produira en moyenne 946 GWh par an dès 2015 ;
 - La réhabilitation des unités thermiques et hydroélectriques de Guinée ;
 - Par l'OMVG, la Guinée devrait bénéficier de 40% du productible de la centrale hydroélectrique de Sambangalou en 2017, soit 51 MW.
- Projets candidats:
 - En plus des secondes phases des projets OMVS et OMVG, les sites repris cidessous sont également envisagés en Guinée.
 - Le site de Souapiti présente une puissance installable de 515 MW et est planifié pour 2019. Il pourrait être associé à un projet de fonderie d'aluminium ce qui ne laisserait pas de puissance pour d'autres usages. Si l'usine d'aluminium n'est pas construite, il servira pour l'alimentation des mines et de l'export;
 - Le site de Kassa B (135MW) est planifié pour 2021;
 - Le site de Poudaldé sur le fleuve Cogan près de Tiopo est en cours d'étude de faisabilité. Il est planifié pour 2017. Sa puissance installée est de 90 MW pour un productible de 350 GWh;
 - Enfin, le projet Grand-Kinkon a une capacité installée de 291 MW pour un productible annuel de 735 GWh et un coût estimatif de 298M\$.

La liste des projets est présentée ci-après :

Site	Localisation	Capacité [MW]	Productible annuel [GWh]
Souapiti		515	2518
Amaria		300	1435
Poudadlé	Basse Guinée	90	350
Tiopo		120	590
Grand Kinkon		291	735
Kassa B		135	528
Kouya		86	334
Bonkon-Diaria	Mayanna Cuináa	174	451
Fetore	Moyenne Guinée	124	322
Lafou		98	255
Kouravel		135	350
Fomi		90	374
Diareguela		72	400
Frankonédou	Haute Guinée	36	173
Kogbédou		14	96
Morisanako		100	523
Nzébéla	Guinée Forestière	48	225
Gozoguézia	Forestiere	48	259

Table 32 – Sites hydroélectriques envisagés en Guinée hors OMVS/OMVG

- Par ailleurs, le raccordement des unités de production des centres isolés de Nzerekore (3MW), Kankan (3MW) et Faranah (1.5 MW) est planifié pour 2016 avec les projets d'interconnexion CLSG et Guinée-Mali.

Sierra Leone

- Projets candidats:
 - L'extension du barrage de Bumbuna par la phase 2:
 - Addition de 350 MW grâce au barrage de Yiben en amont, prévue en 2017;
 - L'addition d'un nouveau barrage en amont du barrage actuel de Goma et l'installation de turbines supplémentaires pour un total de 6 MW prévue en 2015:
 - Le nouveau barrage hydroélectrique de Benkongor avec 3 phases possibles:
 - Phase 1: 34.8 MW;
 - Phase 2: 80 MW:
 - Phase 3: 85.5 MW.
 - Un projet de centrale de 100 MW utilisant la biomasse comme combustible;
 - Un projet sucrier qui pourrait produire 15 MW à partir de bagasse;
 - Un projet de centrale solaire de 5 MW;
 - Les aménagements hydroélectriques mentionnés dans le tableau suivant sont également envisagés au Sierra Leone.

Site	Capacité [MW]	Productible annuel [GWh]
Kuse 2	91.8	679.7
Kambatibo	52.5	268.5
Bitmai 1	52.5	268
Bitmai 2	36.6	249.5
Mano River	180	795

Table 33 – Sites hydroélectriques envisagés au Sierra Leone

Pour le site situé sur la rivière Mano à la frontière avec le Libéria, un partage égal de la puissance et du productible entre les deux pays est prévu. L'investissement total requis est estimé à 473 M\$.

Libéria

- Projets décidés:
 - 10 MW de groupes diesel rapides (10 X 1MW) fonctionnant au DDO sur le site de Bushrod. La mise en service est prévue en 2011;
 - 10 MW de groupes diesel semi-rapides (2 X 5MW) fonctionnant au HFO sur le site de Bushrod. La mise en service est prévue en 2013;
 - La réhabilitation de l'aménagement hydro-électrique de Mount Coffee (66 MW pourront être disponibles en 2014).
- Projets candidats:
 - Le projet Buchanan de 35 MW (2 x 17.5 MW) situé à Kakata. La mise en service est prévue en 2013;
 - 30 MW de groupes diesel semi-rapides (6 X 5MW) fonctionnant au HFO sur le site de Bushrod. La mise en service est prévue en 2015;
 - Le développement du fleuve St Paul par la création de la SPRA (Saint Paul River Authority) avec les sites hydro-électriques de
 - Saint Paul 1B: 78 MW et 512 GWh de productible annuel;
 - Saint Paul 2: 120 MW et 788 GWh de productible annuel.

Ces sites pourraient être mis en service à l'horizon 2018;

- La construction d'un réservoir supplémentaire ("Ultimate" Via Storage) sur le fleuve Saint Paul en amont des sites précités. 132 MW pourraient être produits localement par la centrale V-1 grâce à ce réservoir. De plus, la construction d'un canal le reliant avec le réservoir Via de Mount Coffee permettrait d'augmenter les capacités des centrales hydroélectriques situées en aval dans les proportions suivantes:
 - Mount Coffee: addition possible de 66 MW;
 - Saint Paul 1B: addition possible de 65 MW;
 - Saint Paul 2: addition possible de 100 MW.
- Un barrage hydro-électrique de 180 MW sur la rivière Mano à la frontière avec le Sierra Leone avec un productible annuel de 795 GWh. Ce site serait partagé à hauteur de 50% pour chacun des pays. L'investissement total requis est estimé à 473 M\$;

- Un barrage hydro-électrique de 225 MW sur la rivière Cavally à la frontière avec la Côte d'Ivoire avec un productible annuel de 1200 GWh. Ce site serait également partagé à hauteur de 50% pour chacun des pays;
- Des sites hydro-électriques identifiés sur les rivières Lofa (total de 29 MW), Saint John (total de 67 MW) et Cestos (total de 41 MW).

Mali

• Projets décidés:

- 60 MW du projet BID (6 groupes diesel de 10 MW chacun) fonctionnant au HFO à Balingué. 40 MW ont été inaugurés en 2010. La mise en service des 20 MW restant est prévue en 2011;
- 92 MW par l'IPP Albatros grâce à des groupes diesels fonctionnant au HFO dans la zone minière de Kayes. La mise en service est prévue en 2012;
- Le projet d'aménagement hydroélectrique au fil de l'eau de Félou réalisé dans le cadre de l'OMVS. La part allouée au Mali est de 45%, soit 27MW. La construction est en cours et la mise en service est prévue en 2013;
- Le projet d'aménagement hydroélectrique au fil de l'eau à Gouina réalisé dans le cadre de l'OMVS. La part allouée au Mali est de 45%, soit 63MW. La mise en service est prévue pour 2017;
- Le raccordement au réseau interconnecté de groupes diesel isolé pour un total de 30.4 MW dans l'horizon de l'étude;
- Un projet solaire à Mopti de 10MW installée en 2012 et connecté au réseau interconnecté en 2019.
- Un projet de cycle combiné de 400 MW prévu à Aboadze (Ghana) par le Plan d'Urgence et de Sécurité d'Approvisionnement en Energie Electrique de l'EEEOA. Une part de cette énergie devrait être importée par le Mali.

• Projets candidats:

- Le projet d'aménagement hydroélectrique au fil de l'eau de Sotuba 2 (6 MW). La mise en service est prévue en 2014;
- Le projet agro-industriel de la société sucrière de Markala (SoSumar) contiendra une centrale de cogénération dont 3MW seront excédentaires et transférés au réseau interconnecté. La mise en service est prévue en 2014;
- Le projet d'une petite centrale hybride pour un total de 0.75MW (0.25 solaire + 0.5 diesel) à Ouelessebougou en 2016;
- Le projet d'aménagement hydroélectrique au fil de l'eau de Kenié (42 MW). La mise en service est prévue en 2015;
- Un cycle combiné de 150 MW prévu par le Plan d'Urgence et de Sécurité d'Approvisionnement en Energie Electrique de l'EEEOA.;
- Extension Mopti PV solaire de 50 MW qui sera reliée au réseau interconnecté;
- Un projet solaire PV de 20 MW à installer à partir de 2013;
- Le projet hydraulique de Taoussa sur le fleuve Niger près de Gao, principalement voué à l'agriculture avec un supplément d'hydroélectricité de 25 MW;
- Le projet de centrale hydroélectrique de 10 MW (3 turbines Kaplan) à Markala sur le fleuve Niger avec un productible annuel de 53 GWh;
- Dans le cadre des projets de l'OMVS, le Mali devrait bénéficier d'une partie de la production des sites guinéens de Koukoutamba (281MW, 858 GWh), Boureya (160 MW, 717 GWh) et Balassa (181 MW, 470 GWh) tous les trois situés sur le Bafing;

Dans un horizon plus éloigné, les projets OMVS de Gourbassi (21 MW, 104 GWh) et Badoumbe (70 MW, 410 GWh), puis de Bindougou (50 MW, 289 GWh) et Moussala (30MW, 175GWh) pourraient également voir le jour au Mali.

Côte d'Ivoire

• Projets décidés:

- L'addition de 222 MW sur le site du producteur indépendant CIPREL qui formeront un cycle combiné avec la turbine à gaz de 111 MW mise en service en 2010. La mise en service de la nouvelle turbine à gaz est prévue en juillet 2012 et celle de la turbine à vapeur en juillet 2013;
- L'addition d'urgence de 250 MW supplémentaires (total= 450MW) sur le site de CIPREL ou Vridi grâce à une nouvelle turbine à gaz et une nouvelle turbine à vapeur en 2012;
- Un cycle combiné de 450 MW (2 turbines à gaz et une turbine à vapeur de 150 MW chacune) sur le site d'Abbata. Les mises en services sont prévues en 2014 (1ère turbine à gaz), 2015 (2e turbine à gaz) et 2016 (turbine à vapeur).
- Un projet de cycle combiné de 400 MW prévu à Aboadze (Ghana) par le Plan d'Urgence et de Sécurité d'Approvisionnement en Energie Electrique de l'EEEOA. Une part de cette énergie devrait être importée par la Côte d'Ivoire.

• Projets candidats:

- Le projet de 270 MW du barrage de Soubré. La mise en service est prévue en 2018 ;
- Un cycle combiné de 450 MW (2 turbines à gaz et une turbine à vapeur de 150 MW chacune) sur le site de Bassam qui constituera la 5e centrale thermique d'Abidjan. Les mises en services seraient prévues en 2020 (1ère turbine à gaz), 2023 (2e turbine à gaz) et 2025 (turbine à vapeur);
- Les capacités des sites hydro-électriques sont répertoriées dans le tableau cidessous:

Bassins	Sites	Capacité Productible [MW] annuel [GWh]	
SASSANDRA	Louga	280	1 330
	Gribo Popoli	112	515
	Boutoubre	156	785
BANDAMAN	Tiassalé	51	215
CAVALLY	Tiboto	225	1 200
СОМОЕ	Aboisso-Comoé	90	392

Table 34 – Aménagements hydroélectriques envisagés en Côte d'Ivoire

Pour le site de Tiboto une répartition de 50% pour la Côte d'Ivoire et 50% pour le Libéria peut être supposée au vu de la répartition plus ou moins égale du bassin du fleuve Cavally entre les deux pays.

Ghana

- Projets décidés:
 - La phase 1 de la centrale T3 d'Aboadze (en construction), qui consistera en un cycle combiné de 120 MW. Sa mise en service est prévue pour 2012;
 - Une deuxième turbine à gaz de 110MW sur le site de Tema T1 dont la mise en service est prévue en 2012. L'addition d'une turbine à vapeur de 110 MW est quant à elle prévue en 2015 pour créer un cycle combiné de 330 MW au total;
 - Le barrage hydroélectrique de 400 MW à Bui sur la Volta Noire avec un productible annuel de 1000 GWh. La mise en service est prévue pour mi 2013 :
 - Deux turbines à gaz de 110 MW chacune prévues à Domini par BTPP (centrale Domini T1) afin de tirer parti des ressources de gaz offshore découvertes. Leur mise en service est prévue en 2013;
 - L'addition d'une turbine à vapeur de 110 MW sur la centrale d'Aboadze T2 pour passer à un cycle combiné de 330 MW au total. La mise en service est prévue en 2014 ;
 - Un projet de cycle combiné de 400 MW prévu à Aboadze (T4) par le Plan d'Urgence et de Sécurité d'Approvisionnement en Energie Electrique de l'EEEOA.
 - 2x5MW solaire PV en 2012 et 2013;
 - Eoliens: 50 MW en 2014 et 100 MW en 2015;
 - Un projet de cycle combiné de 450 MW (2 turbines à gaz de 150 MW chacune et une turbine à vapeur de 150 MW) sur le site de Maria Gléta (au Bénin) décidé par le Plan d'Urgence et de Sécurité d'Approvisionnement en Energie Electrique de l'EEEOA. Une part devrait être dédiée à l'alimentation du Ghana.

• Projets candidats:

- La phase 2 de la centrale d'Aboadze T3 de caractéristiques similaires à la phase 1 décrite précédemment. La mise en service est prévue en 2016;
- GT sur barge: 2x50 MW;
- Projet SAP de CC 2x163.6 MW;
- La centrale de Cempower sur le site Tema T2 composée d'abord de 2 turbines à gaz de 110 MW auxquelles viendront ensuite s'ajouter une turbine à vapeur de 110 MW pour créer un cycle combiné de 330 MW;
- L'addition d'une turbine à vapeur de 110 MW à la centrale de Domini T1 par BTPP pour créer un cycle combiné de 330 MW au total;
- 5 sites hydroélectriques au stade des études de faisabilité, conduites par la VRA (Juale, Pwalugu, Kulpawn, Daboya) et le ministère de l'énergie (Hemang):

Site	Capacité [MW]	Productible annuel [GWh]
Juale	87	405
Pwalugu	48	184
Kulpawn	36	166
Daboya	43	194
Hemang	93	340

Table 35 – Sites hydroélectriques envisagés au Ghana

Il y a un projet de barrage avec centrale hydroélectrique de 60 MW (3 turbines Kaplan de 20MW) à la frontière avec le Burkina Faso sur le site de Noumbiel (également appelé Koulbi au Ghana) sur la Volta Noire. Le productible total annuel est évalué à 203 GWh avec une répartition de 80% de l'énergie produite pour le Burkina et 20% pour le Ghana.

Togo

Le secteur de l'électricité au Togo et au Benin est régi par l'Accord international et Code Benino-togolais de l'électricité signé entre les 2 états en 1968 et créant une communauté d'intérêt entre les 2 pays dans le domaine de l'énergie électrique.

Ce code conférait à la Communauté Electrique du Benin le monopole de la production, du transport et des importations/exportations de l'énergie électrique sur l'ensemble du territoire des deux états.

Néanmoins, l'accord international et Code bénino-togolais signé en 1968 a été révisé en 2003. Ce sont donc les dispositions du nouvel accord et Code de 2003 qui sont désormais en vigueur. Conformément aux dispositions de ce nouvel accord et Code bénino-togolais révisé de 2003, la CEB n'a plus le monopole de la production d'électricité. Le segment de la production d'électricité est ouvert aux producteurs indépendants mais la CEB demeure l'acheteur unique de leur production partout où leur réseau est présent.

Projets décidés:

- Le projet de 147 MW du barrage d'Adjarala avec un productible annuel de 366 GWh. La mise en service est prévue en 2017 par la CEB.
- Un projet de cycle combiné de 450 MW (2 turbines à gaz de 150 MW chacune et une turbine à vapeur de 150 MW) sur le site de Maria Gléta (au Bénin) décidé par le Plan d'Urgence et de Sécurité d'Approvisionnement en Energie Electrique de l'EEEOA. Une part devrait être dédiée à l'alimentation du Togo.

Projets candidats:

- Un projet éolien de 20 MW à réaliser avec une énergie annuelle garantie de 40 GWh dont la mise en service est prévue en 2013;
- 100 MW de production thermique avec une énergie annuelle garantie de 350 GWh en 2013 (mise en service) et de 700 GWh à partir de 2014;
- Un projet solaire de 5 MW de la CEB avec une énergie annuelle garantie de 10 GWh dont la mise en service est prévue en 2015;

 Un projet de barrage avec centrale hydroélectrique de 50 MW à Tététou sur le fleuve Mono qui serait situé entre le barrage de Nangbeto et celui d'Adjarala avec un productible annuel de 148 GWh. Une étude de faisabilité a été effectuée en 1984.

Bénin

• Projets décidés:

- Le projet de 147 MW du barrage d'Adjarala (Togo) avec un productible annuel de 366 GWh devrait être partagé entre le Togo et le Bénin
- 80 MW sur le site de Maria Gleta à Cotonou. La mise en service est prévue en 2011;
- Un projet de cycle combiné de 450 MW (2 turbines à gaz de 150 MW chacune et une turbine à vapeur de 150 MW) sur le site de Maria Gléta à Cotonou décidé par le Plan d'Urgence et de Sécurité d'Approvisionnement en Energie Electrique de l'EEEOA. La centrale devrait être opérationnelle en 2014.

• Projets candidats:

- Un projet solaire de 20 MW à réaliser avec une énergie annuelle garantie de 40 GWh dont la mise en service est prévue en 2012;
- Un projet solaire de 5 MW de la CEB avec une énergie annuelle garantie de 10 GWh dont la mise en service est prévue en 2015;
- Un projet solaire de 5 MW financé par l'AFD dans le Nord-Est du Bénin. (mise en service supposée: 2014);
- Un projet de barrage avec centrale hydroélectrique de 160 MW à Kétou sur le fleuve Ouémé avec un productible annuel estimé à 490 GWh. Une étude de faisabilité a été effectuée en 1992.

Burkina Faso

• Projets décidés:

- 18 MW fonctionnant au HFO et formant la première phase de la centrale de Komsilga. La mise en service est prévue en 2011;
- 37.5 MW (3 groupes diesel de 12.5 MW fonctionnant au HFO et formant la 2e phase de la centrale de Komsilga. La mise en service est prévue en 2011;
- 36 MW (2 groupes diesel de 18 MW) fonctionnant au HFO qui formeront la 3e phase de la centrale de Komsilga (total 90MW). La mise en service est prévue en 2013;
- 20 MW (2 groupes diesel de 10 MW fonctionnant au HFO et formant la 2e phase de la centrale de Bobo 2. La mise en service est prévue en 2012.
- Un projet de cycle combiné de 400 MW prévu à Aboadze (Ghana) par le Plan d'Urgence et de Sécurité d'Approvisionnement en Energie Electrique de l'EEEOA. Une part de cette énergie devrait être importée par le Burkina Faso.

• Projets candidats:

- Un projet solaire de 20 MW dont 16 MW seraient dédiés à la société minière Semafo. La mise en service est prévue en 2012;
- Un projet solaire photovoltaïque de 1.5MW (extensible à 3MW) à Ouagadougou. La mise en service est supposée intervenir en 2012 (financement déjà engagé);
- Un projet solaire photovoltaïque de 20MW (extensible à 40MW) à Ouagadougou. La mise en service est supposée intervenir en 2014;

- Le raccordement de centres isolés entre 2011 et 2013 pour un total de 13.5 MW installés et 9.5 MW disponibles ;
- Un projet de barrage avec centrale hydroélectrique de 60 MW (3 turbines Kaplan de 20 MW) à la frontière avec le Ghana sur le site de Noumbiel (appelé Koulbi au Ghana) sur la rivière Mouhoun (Volta Noire). Le productible total annuel est évalué à 203 GWh avec une répartition de 80% de l'énergie produite pour le Burkina et 20% pour le Ghana;
- Un projet de barrage avec centrale hydroélectrique de 12 MW (3 turbines de 4MW) à Bougouriba avec un productible de 30 GWh;
- Un projet de barrage avec centrale hydroélectrique de 14 MW (2 turbines Kaplan de 7MW) à Bagré-aval avec un productible moyen annuel de 37.3 GWh.

Niger

• Projets décidés:

- En 2011, sept unités diesels de 2.2 MW chacune seront installées à la centrale de Niamey 2, en remplacement des vieilles unités diesels ;
- En 2012, 2 unités de 2MW chacune seront installées à Maradi et 2 autres de 2 MW seront installées à Zinder, en zone Niger Centre-Est;
- Dans la zone fleuve, une puissance additionnelle de 70MW diesel sera installée à Niamey en 2013.
- Dans la zone fleuve, le barrage de Kandadji sera achevé en 2015 Ce barrage de 130 MW devrait apporter 629 GWh annuel au Niger;

• Projets candidats:

- La centrale au charbon de Salkadamna totaliserait 200 MW. Cette centrale serait localisée entre les zones fleuve, centre-est et nord, près d'un gisement de charbon et serait construite par tranches de 50MW entre 2015 et 2016;
- Dans la zone fleuve, une ferme éolienne de 30 MW est planifiée en 2014. Le site reste à définir;
- Dans la zone fleuve, une centrale solaire thermique de 50 MW est planifiée pour 2014. Le site reste à définir;
- Dans la zone centre-est, à Zinder, un cycle combiné de 60 MW est attendu en 2013;
- D'autres unités hydro sont mentionnées dans la zone fleuve:
 - Gambou pour 122.5 MW;
 - Dyodonga pour 26 MW.

Nigéria

- Projets décidés:
 - Un projet de cycle combiné de 450 MW (2 turbines à gaz de 150 MW chacune et une turbine à vapeur de 150 MW) sur le site de Maria Gléta (au Bénin) décidé par le Plan d'Urgence et de Sécurité d'Approvisionnement en Energie Electrique de l'EEEOA. Une part devrait être dédiée à l'alimentation du Nigéria.
 - FGN phase 1: 1408 MW dont 1055 MW ont été mis en service en 2007. Il reste 353 MW prévus pour 2011;
 - NIPP: 2599 MW prévus pour 2011;
 - FGN phase 2: 2148 MW prévus dont 696 MW pour 2012 et 1452 MW pour 2013.

A côté de ça, les compagnies pétrolières ont prévus les investissements suivants :

- La centrale de Afam 6, par Shell: 5 unités de 150 MW en 2012;
- La centrale de Bonny, par Mobil: 3 unités de 130 MW en 2012;
- La centrale Chevron Texaco avec 3 unités de 250 MW pour 2012;
- La centrale de TotalFinaElf avec 4 unités de 125 MW pour 2012.

De plus, quelques IPP sont attendus:

- Alscon avec 6 unités de 90 MW pour 2012;
- La centrale IBOM Power 2 avec 500 MW en 2012.
- Projets candidats:

Des projets hydroélectriques importants sont envisagés au Nigéria :

- La réhabilitation de Kainji;
- Le projet de Zungeru (700MW);
- Le projet de Mambilla (8*325MW).

Quelques IPP sont également attendus dont

- ICS Power: 6 unités de 100 MW en 2015;
- La centrale WESTCOM de 500 MW en 2015;
- La centrale Farm Electric de 150 MW en 2015;
- La centrale Supertek de 1000 MW en 2017;
- La centrale Ethiope de 2800 MW en 2017.

Commentaires concernant l'OMVS

L'OMVS est une organisation ayant pour vocation d'organiser les actions de quatre pays pour la mise en valeur du fleuve Sénégal et son bassin. Il s'agit de la Guinée, du Mali, de la Mauritanie et du Sénégal.

La première réalisation de l'OMVS est le barrage de Manantali situé au Mali sur le Bafing (affluent du Sénégal) dont la construction s'est achevée en 1988. Une centrale hydro-électrique de 205MW (4 groupes de 41 MW) y a ensuite été installée offrant un productible annuel de 800GWh. La production du site a été rendue disponible pour 3 des pays de l'OMVS grâce à une interconnexion 225kV joignant Bamako à Dakar en longeant la frontière du Sénégal avec la Mauritanie.

L'OMVS envisage de nombreux projets avec des horizons allant du court au long terme. Ceux-ci sont résumés dans le tableau suivant :

Rivière	Site	Pays	Capacité	Productible annuel	Coût estimé	Statut	Mise en service
			[MW]	[GWh]	[M\$]		supposée
Sénégal	Félou	Mali	60	350	170	EC	2013
	Gouina	Mali	140	589	329	APD	2017
Bafing	Koukoutamba	Guinée	281	858	440	APD	CT
	Boureya	Guinée	160	717	373	APS	CT
	Balassa	Guinée	181	470	171	F	CT
	Bindougou	Mali	50	289		PF	MT
	Diaoya	Guinée	149	581	332	PF	LT
Falémé	Gourbassi	Mali/ Sénégal	21	104		F	MT
	Moussala	Mali	30	175		PF	MT
Bakoye	Badoumbe	Mali	70	410		F	MT
Tene	Tene I	Guinée	76	199	122	PF	LT

Table 36 – Projets hydroélectriques de l'OMVS

EC : En construction ; APD : Avant projet détaillé ; APS : Avant projet sommaire ; F : Faisabilité ; PF : Pré-faisabilité ; CT/MT/LT : court/moyen/long terme.

Commentaires concernant l'OMVG

L'OMVG est une organisation qui vise à coordonner les actions des quatre pays concerné par le bassin du fleuve Gambie : le Sénégal, la Guinée, la Gambie et la Guinée Bissau. Par extension, d'autres fleuves de la région sont concernés par cet organisme.

Jusqu'ici, l'OMVG a deux grands projets.

Le premier grand projet se compose de deux parties et est prévu pour 2017 :

- La centrale hydroélectrique de Sambangalou qui comportera 4 unités de 32 MW et produira en moyenne 402 GWh par an.
- Une interconnexion 225 kV qui parcourra 1677 km pour relier 15 sous-stations, pour un investissement de 576.5 millions de dollars. Il permettra l'évacuation de l'énergie de Guinée, et l'interconnexion des 4 pays de l'OMVG.

Le deuxième grand projet se compose de quatre parties et est prévu à plus long terme :

- La centrale de Saltinho, au fil de l'eau, en Guinée Bissau. D'une puissance de 20 MW (3 unités de 6.5 MW), elle aura un productible moyen estimé à 82 GWh.
- La centrale de Digan, au fil de l'eau, en Guinée. D'une puissance de 93.3 MW, elle aura un productible moyen de 242.5 GWh.
- Le barrage de Fello-Sounga, en Guinée, avec ses deux unités de 41 MW. Il assurera la production annuelle de 333 GWh.
- Le renforcement de l'interconnexion 225 kV construite lors du premier projet.
 500 nouveaux kilomètres de lignes devraient être construits. Il y aura 4 nouvelles sous-stations. Cela coûtera 145.4 millions de dollars.

3.1.5. Données de transport

Ce chapitre a pour but de synthétiser les données de transport qui ont été introduites dans l'outil d'optimisation PRELE.

Les projets décidés ont une date de mise en service fixe. Les projets planifiés ne sont pas remis en cause mais la possibilité d'un retard de 2 ans est examinée. Enfin, les projets envisagés sont laissés libres à l'optimisation. Par ailleurs, des investissements autres que les grands projets d'interconnexions sont proposés à l'outil d'optimisation

3.1.5.1. PROJETS DÉCIDÉS

Cette section reprend les projets décidés pour lesquels les études sont terminées et pour lesquels le financement a été obtenu ou est sur le point de l'être.

Projet «Dorsale 330kV»

Le projet consiste en un axe 330kV le long de la côte interconnectant la Côte d'Ivoire (Riviera), le Ghana (Prestea et Volta), le Togo (Lomé C), le Bénin (Sakété) et le Nigéria (Ikeja West). 2 tronçons sont planifiés pour compléter les 2 tronçons déjà existants

- Le tronçon Volta(Ghana) Sakété (Bénin) en passant par Lomé qui devrait être mis en service en 2013;
- Le tronçon Riveria (Côte d'Ivoire) Ghana (Prestea). Il devrait être mis en service d'ici 2017.

Projet OMVG

Le projet OMVG comprend une ligne d'interconnexion 225kV simple terne traversant la Guinée, le Sénégal, la Guinée-Bissau et la Gambie pour partager la production des sites hydroélectrique de Guinée. La mise en service est prévue en 2017. Mais la première phase (Linsan-Labé-Mali et Linsan-Kaolack-Tambacounda) pourrait être achevée à plus court-terme (2015).

Projet CLSG (Cote d'Ivoire –Liberia– Sierra Leone– Guinée)

Une ligne d'interconnexion 225kV simple terne est prévue entre les postes Man (Côte d'Ivoire) – Yekepa (Libéria) – Nzérékoré(Guinée) – Buchanan (Libéria) – Monrovia (Libéria) – Bumbuna (Sierra Léone) – Linsan (Guinée). Sa mise en service est prévue en 2015. A court-terme, un seul terne sera installé. Néanmoins, les pylônes sont prévus pour accueillir un second terne à plus long terme.

Interconnexion Mali - Côte d'Ivoire

Cette interconnexion 225kV reliera les postes de Ferkéssédougou (Côte d'Ivoire) – Sikasso (Mali) - Koutiala (Mali) et Ségou (Mali). Elle est en cours de réalisation et 64% sont déjà réalisés. La mise en service est attendue courant 2012.

Notons que la ligne monoterne 225kV interne à la Côte d'Ivoire qui est planifiée entre Laboa et Ferkéssédougou complète ce projet en permettant de fermer la boucle 225kV interne à la Côte d'Ivoire et une sécurisation des interconnexions vers le Nord.

Interconnexion Ghana-Burkina Faso

Une ligne d'interconnexion 225kV entre Bolgatanga (Ghana) et Ouagadougou (Burkina Faso) sera mise en service en 2013.

Interconnexion Ghana – Burkina Faso – Mali

Cette interconnexion 225kV prévoit de connecter les postes Bolgantaga (Ghana) – Bobo Dioulasso (Burkina Faso) – Sikasso (Mali) – Bamako (Mali) à l'horizon 2015. Elle est prévue en double terne sur le tronçon Bamako-Sikasso. A Sikasso, un terne va vers Ferkessedougou, le second continue vers Bobo Dioulasso.

3.1.5.2. PROJETS PLANIFIÉS

Cette section reprend des projets déjà bien détaillés et ayant fait l'objet d'études de faisabilité mais pour lesquels des études complémentaires sont encore à réaliser et/ou pour lesquels une partie du financement reste encore à trouver.

Interconnexion Guinée - Mali

Le projet d'interconnexion Guinée-Mali est inscrit parmi les projets prioritaires identifiés par le Plan Directeur Révisé de la CEDEAO. Il est conçu pour évacuer la production de la future centrale hydroélectrique de 90MW de Fomi (Guinée). Le projet comprend la construction d'une ligne 225kV entre Fomi (Guinée) et Nzérékoré (Guinée) puis entre Fomi (Guinée) et Bamako (Mali) et entre Fomi (Guinée) et Linsan (Guinée). Il est prévu pour 2016.

Cette ligne de transport permettra non seulement l'interconnexion de la Guinée et du Mali, mais également l'interconnexion entre les pays membres de l'OMVS et avec la future ligne d'interconnexion Côte d'ivoire - Libéria - Sierra Léone - Guinée (CLSG).

Projet «Corridor Nord»

Le projet reprend une ligne d'interconnexion 330kV entre Birnin Kebbi (Nigéria) - Bembéréké (Bénin) – Niamey (Niger) – Ouagadougou (Burkina Faso) à 330 kV. Plusieurs variantes sont envisagées en termes de nombre de ternes (1 ou 2) par tronçon. La mise en service de cette ligne est planifiée en 2016.

Axe 330kV Nord-Sud au Ghana

Ce projet bien qu'interne au réseau du Ghana est un maillon important de l'ossature du réseau interconnecté EEEAO améliorant fortement les capacités d'exportation vers le Burkina Faso. Cette ligne d'interconnexion 330kV relie les postes de Domini (à la frontière avec la Cote d'Ivoire) au poste de Bolgatanga à la frontière avec le Burkina Faso. La mise en service de cet axe est planifiée pour 2015.

Projet de renforcement de l'interconnexion Nigéria-Bénin

Ce projet d'une ligne double terne entre Sakété (Bénin) et Omotosho est planifié (date de mise en service considérée : 2016).

3.1.5.3. PROJETS ENVISAGÉS

Cette section reprend différents projets qui sont évoqués dans les documents collectés ou lors des entretiens réalisés durant les missions de collecte de données dans les différents pays. Les études de préfaisabilité de ces projets n'ont pas encore été entamées ou sont en cours.

Projet dorsale médiane

Ce projet est repris par CEB dans ses projets de développement prioritaires. Cette interconnexion relierait Yendi (Ghana) – Kara (Togo) - Bembereke (Benin) et Kaindji (Nigéria). Elle serait attendue à l'horizon 2020. Ce projet pourrait être justifié pour renforcer et évacuer la puissance produite par le site de Kaindji vers les zones nord de ces pays.

Néanmoins ce projet nécessite d'être précisé et étudié plus en détails notamment sur les points suivants:

- Le poste de Yendi au Ghana est assez décentré avec une charge relativement faible et il n'y a pas de projet d'extension du réseau 330kV du Ghana pour connecter cette sous-station 161kV. Il serait plus logique de prolonger cette ligne jusqu'à l'axe 330kV traversant le Ghana du Nord au Sud;
- L'autre alternative est de réaliser la dorsale médiane en 161kV, à l'exception du tronçon Kainji-Bembereke, qui serait, lui, en 330kV.

Interconnexions Libéria-Côte d'Ivoire

Une interconnexion côtière entre Monrovia au Libéria et San Pedro en Côte d'Ivoire est évoquée par les pays concernés. Ce projet permettrait notamment l'évacuation du projet hydroélectrique de Tiboto (Cavally), à la frontière entre les deux pays.

Interconnexions OMVS

Dès la mise en service du site hydraulique de Gouina (projet décidé, mise en service estimée en 2017), il faudra éventuellement renforcer le réseau 225kV vers Dakar. Il est envisagé une boucle par l'intérieur du pays via Tambacounda qui permettrait également une connexion avec le réseau OMVG.

Il est également envisagé une connexion Linsan-Manantali pour interconnecter les barrages en projet sur le territoire de Guinée : Boureya et Koukoutamba.

3.1.5.4. AUTRES OPTIONS D'INVESTISSEMENT

En plus des projets envisagés par des études précédentes, de nouveaux projets sont laissés à l'optimisation dans Prele dès 2018.

- Il est d'abord proposé une nouvelle interconnexion entre la **Guinée** et le **nord de** la **Côte d'Ivoire** (Fomi-Odienne-Boundiala-Ferkessedougou). Un tel axe permettrait d'évacuer directement l'énergie hydroélectrique qui serait produite en Guinée vers les régions Nord disposant de peu de moyens de production à faible coût d'exploitation. Le tracé de cette ligne sera discuté de façon à limiter son impact environnemental.
- Dans la même optique, une alternative à ce tracé consisterait en une ligne reliant la Guinée à la région de Sikasso au Mali.
- Les différents aménagements envisagés pour la **dorsale médiane** sont proposés comme option d'investissement
- Enfin, le renforcement des axes existant, décidés ou planifié est également envisagé.

4. DONNÉES DES ÉTUDES DE RÉSEAUX ÉLECTRIQUES

4.1. Situation actuelle des infrastructures par pays

Cette section présente la situation actuelle des infrastructures dans les différents pays incluant les lignes de transport, les transformateurs, les capacités et bobines d'inductance (self).

Les différents documents collectés ont été centralisés et synthétisés dans des tableaux par pays. Le symbole N/A (*not available*) remplace les données manquantes.

4.1.1. Sénégal

La situation actuelle du système du Sénégal est présentée aux deux tables suivantes (lignes et transformateurs).

Les infrastructures connectées à une tension supérieure ou égale à 90kV ont été considérées. Le système est caractérisé par 24 lignes de transport, 36 transformateurs et aucune compensation réactive.

	LIGI	VES - SENEG	GA L	•
Nom de	e la ligne	Longueur	Tension	Limite
		[km]	d'exploitation [kV]	thermique [MVA]
de	à			
Dagana	Matam	267	225	250
Kaolack	Touba	70	225	250
Kayes	Manantali (MALI)	184	225	250
Matam	Kayes	256	225	250
Sakal	Dagana	114	225	250
Tobène	Sakal	124.5	225	250
Touba	Tobène	105	225	250
Bel-Air	Hann	5	90	91.9
Bel-Air	Hann	5.5	90	132.9
Bel-Air	Hann	5.5	90	132.9
Cap-Des-Biches	Hann	18.19	90	132.9
Cap-Des-Biches	Hann	16.15	90	86.5
Cap-Des-Biches	Kounoune	6.47	90	91.9
Cap-Des-Biches	Sococim	6.6	90	91.9
Hann	Mbao	10.95	90	86.5
Hann	Kounoune	22.99	90	132.9
Kounoune	Sococim	4.68	90	86.5
Mbao	Cap-Des-Biches	7.18	90	91.9
Sococim	Mbour	46.6	90	139.3
Sococim	Thiona	35.4	90	86.5
Thiona	Tobène	31.35	90	71.7
Tobène	Taïba	13	90	132.9
Tobène	Méckhé	35.79	90	86.5
Tobène	Kounoune	55.37	90	132.9

Table 37 – Lignes de transport – Sénégal

TRANSFORMA TEURS - SENEGAL								
Sous-station	V1 (kV)	V2 (kV)	Sn (MVA)	Sous-station	V1 (kV)	V2 (kV)	Sn (MVA)	
Bel-Air	90	30	80	Cap-des-Biches	7	95	26.5	
Bel-Air	90	30	80	Hann	90	33.5	80	
Bel-Air	90	6.6	36	Hann	90	33.5	80	
Bel-Air	90	6.6	10	Hann	90	33.5	80	
Bel-Air	90	6.6	10	Kaolack	225	15	50	
Bel-Air	15	90	50	Kaolack	225	15	50	
Bel-Air	15	90	50	Kaolack	225	33	40	
Bel-Air	11	90	52	Kaolack	225	33	40	
Bel-Air	7	6.6	20	Mbao	90	33	40	
Cap-des-Biches	90	33.5	33	Mbao	90	33	40	
Cap-des-Biches	90	33.5	33	Mbour	90	33	40	
Cap-des-Biches	13	90	36	Thiona	90	33	40	
Cap-des-Biches	13	93.6	33	Thiona	90	33	40	
Cap-des-Biches	13	93.6	33	Tobene	225	90	75	
Cap-des-Biches	12	90	40	Tobene	225	90	75	
Cap-des-Biches	12	97.2	27	Tobene	90	30	20	
Cap-des-Biches	7	95	30	Touba	225	33	40	
Cap-des-Biches	7	95	26.5	Touba	225	33	40	

Table 38 – Transformateurs – Sénégal

4.1.2. Gambie

La situation actuelle du système de Gambie est présentée aux deux tables suivantes (lignes et transformateurs).

Les infrastructures connectées à une tension supérieure ou égale à 11kV ont été considérées. Le système est caractérisé par 10 lignes de transport, 12 transformateurs et aucune compensation réactive.

LIGNES - GAMBIE								
Nom d	e la ligne	Longueur	Tension d'exploitation	Limite thermique				
		[km]	[kV]	[MVA]				
de	à							
Bijilo	Kotu	8	33	N/A				
Brikama	Bijilo	40	33	N/A				
Brikama	Medina	N/A	33	N/A				
Brikama	Medina	N/A	33	N/A				
Brikama	Wellingara	22	33	N/A				
Kotu	Mile5	6	33	N/A				
Kotu	Wellingara	10	33	N/A				
Mile2	Wellingara	17	33	N/A				
Mile5	Mile2	6	33	N/A				
Kotu	Mile5	6	11	N/A				

Table 39 – Lignes de transport – Gambie

TRANSFORMATEURS - GAMBIE					
Sous-station	V1 (kV)	V2 (kV)	Sn (MVA)		
Brikama	33	11	N/A		
Brikama	33	11	N/A		
Brikama	33	11	N/A		
Brikama	33	11	N/A		
Bijilo	33	11	N/A		
Kotu	33	11	N/A		
Kotu	33	11	N/A		
Kotu	33	11	N/A		
Mile5	33	11	N/A		
Mile2	33	11	N/A		
Medina	33	11	N/A		
Wellingara	33	11	N/A		

Table 40 – Transformateurs – Gambie

4.1.3. Guinée Bissau

La situation actuelle du système de Guinée Bissau est présentée aux deux tables suivantes (lignes et transformateurs).

Les infrastructures connectées à une tension supérieure ou égale à 30kV ont été considérées. Le système est caractérisé par 2 lignes de transport, 4 transformateurs et aucune compensation réactive.

LIGNES - GUINEE BISSAU						
Nom de	e la ligne Longu [km		Tension d'exploitation [kV]	Limite thermique [MVA]		
de	à					
Antula	Centrale	N/A	30	N/A		
Centrale	Bra	N/A	30	N/A		

Table 41 – Lignes de transport – Guinée Bissau

TRANSFORMATEURS - GUINEE BISSAU					
Sous-station V1 (kV) V2 (kV) Sn (MV					
Antula	30	10	15		
Bra	30	10	15		
Centrale	30	10	15		
Centrale	30	10	15		

Table 42 – Transformateurs – Guinée Bissau

4.1.4. Guinée

La situation actuelle du système de Guinée est présentée aux trois tables suivantes (lignes, transformateurs et shunts).

Les infrastructures connectées à une tension supérieure ou égale à 15kV ont été considérées. Le système est caractérisé par 24 lignes de transport, 37 transformateurs et 4 compensations réactives.

	LIGI	VES - GUINE	E	
Nom d	e la ligne	Longueur [km]	Tension d'exploitation [kV]	Limite thermique [MVA]
de	à	נאווון	[KA]	[IMAN]
Linsan	a Kindia	65	110	97
Kindia	Gdes Chutes	30.4	110	90
G.chte	Matoto	69	110	97
G.chte	Matoto	69	110	97
G.chte	Matoto	66	110	90
Donkea	Gdes Chutes	13	110	90
G.chtes	Yessoulou	37	60	49
Yessoulou	Manéah	5	60	49
Manéah	Sonfonéah	13	60	49
Sonfonéah	Matoto	10	60	49
Matoto	Libraport	16	60	49
Libraport	Tombo	1	60	40
Dabola	Bissikrima	24	30	N/A
Dabola	Faranah	102	30	N/A
Dalaba	Mamou	43	30	N/A
Derivation	Labé	26	30	N/A
Derivation en T	Dinguiraye	71	30	N/A
Pita	Timbi Madina	10	30	N/A
Pita	Dalaba	48	30	N/A
Timbi Madina	Dervation	10	30	N/A
Usine	Dabola	7	30	N/A
Usine	Pita	5	30	N/A
Donkea	3aneah (Ancienne	8	15	N/A
Donkea	Baneah (Nouvelle)		15	N/A
Grandes Chutes	Donkea	13	15	N/A

Table 43 – Lignes de transport – Guinée

TRANSFORMATEURS - GUINEE							
Sous-station	V1 (kV)	V2 (kV)	Sn (MVA)	Sous-station	V1 (kV)	V2 (kV)	Sn (MVA)
Centrale Banéah	15	3.15	2.78	Poste 110 kV Garafiri	114	5.65	31.5
Centrale Banéah	15	3.15	2.78	Poste 110 kV Garafiri	114	5.65	31.5
Centrale Donkéa	110	6.3	8.5	Poste 110 kV Garafiri	114	5.65	31.5
Centrale Donkéa	110	6.3	8.5	Poste CE Sonfonia	60	6.2	4.6
Centrale G.chutes	65	5.5	11	Poste G.cutes	110	60	12.5
Centrale G.chutes	65	5.5	11	Poste Kindia	110	15	15
Centrale G.chutes	60	3.3	6.3	Poste Mamou	110	31.5	15
Centrale G.chutes	60	3.3	6.3	Poste Manéah	55.44	16.5	10
Centrale Tombo1	20	6	6.25	Poste Manéah	20	16.5	8
Centrale Tombo1	20	6.6	6.25	Poste Matoto	121	63	25
Centrale Tombo1	20	6.6	6.25	Poste Matoto	110	20	50
Centrale Tombo1	20	11	3	Poste Matoto	110	20	15
Centrale Tombo2	20	11	6	Poste Matoto	110	20	15
Centrale Tombo2	20	11	6	Poste Sonfonia	55.44	22	10
Centrale Tombo3	20	6.3	16	Poste Tombo	60	20	50
Centrale Tombo3	20	6.3	16	Poste Tombo	55.6	20	15
Centrale Tombo3	20	6.3	16	Poste Tombo	55.6	20	15
Centrale Tombo3	20	6.3	16	Poste Yessoulou	60	0.4	0.3
CentraleGarafiri	110	21	6.3				

Table 44 – Transformateurs – Guinée

Condensateurs et Selfs shunt- GUINEE						
Sous-station	Туре	Tension (kV)	Bancs	Capacité/banc (MVAr)	Capacité (MVAr)	
Matoto	Capa.	20	2	-5	-10	
Matoto	Ind.	20	2	3.84	7.68	
Sonfonéa	Ind.	20	1	3.84	3.84	
Tombo	Ind.	20	4	3.84	15.36	

Table 45 – Shunts – Guinée

4.1.5. Sierra Leone

La situation actuelle du système du Sierra Leone est présentée aux trois tables suivantes (lignes, transformateurs et shunts).

Les infrastructures connectées à une tension supérieure ou égale à 161kV ont été considérées. Le système est caractérisé par 6 lignes de transport, 9 transformateurs et 6 compensations réactives.

La puissance nominale des transformateurs est fixée à 100MVA indépendamment de leur niveau de tension. Cela ne semble pas réaliste et ces valeurs sont dès lors en rouge dans le tableau.

	LIGNES - SIERRA LEONE					
ı	Nom de la ligne		Tension d'exploitation	Limite thermique		
		[km]	[kV]	[MVA]		
de	à					
Bumbuna	Goma	142	225	327		
Kamakwie	Yonibana	60	225	327		
Kenema	Во	116	225	327		
Kenema	Goma	95	225	327		
Yonibana	Bumbuna	76	225	327		
Freetown	Bumbuna	205	161	201		

Table 46 – Lignes de transport – Sierra Leone

TRANSFOR	TRANSFORMATEURS - SIERRA LEONE						
Sous-station	V1 (kV)	V2 (kV)	Sn (MVA)				
Во	225	33	100				
Bumbuna	225	161	100				
Bumbuna	161	13.8	100				
Freetown	225	161	100				
Freetown	161	11.8	100				
Kamakwie	225	33	100				
Kenema	225	33	100				
Kenema	33	11	100				
Yonibana	225	33	100				

Table 47 – Transformateurs – Sierra Leone

Condensateurs et Selfs shunt - SIERRA LEONE					
Sous-station	Туре	Tension (kV)	Bancs	Capacité /banc (MVAr)	Capacité (MVAr)
Freetown	cap.	11	-	-	-15
Во	ind.	225	-	-	10
Во	ind.	225	-	-	10
Bumbuna	ind.	225	-	-	5
Bumbuna	ind.	225	-	-	10
Kenema	ind.	225	-	-	5

Table 48 – Shunts – Sierra Leone

4.1.6. Libéria

La situation actuelle du système du Libéria est présentée aux deux tables suivantes (lignes, transformateurs).

Les infrastructures connectées à une tension supérieure ou égale à 66kV ont été considérées. Le système est caractérisé par 4 lignes de transport et 4 transformateurs.

LIGNES - LIBERIA					
Nom de la ligne		Longueur	Tension d'exploitation	Limite thermique	
		[km]	[kV]	[MVA]	
de	à				
Bushrod	Kru Town	7	66	40	
Bushrod	Stockton Creek	3	66	40	
Stockton Creek	Capitol	5	66	40	
Stockton Creek	Paynesville	12	66	40	

Table 49 – Lignes de transport – Libéria

TRANSFORMATEURS - LIBERIA					
Sous-station	V1 (kV)	V2 (kV)	Sn (MVA)		
Bushrod Island	66	22	10		
Capitol	66	22	10		
Kru Town	66	22	10		
Paynesville	66	22	10		

Table 50 – Transformateurs – Libéria

4.1.7. Mali

La situation actuelle du système du Mali est présentée aux deux tables suivantes (lignes, transformateurs).

Les infrastructures connectées à une tension supérieure ou égale à 33kV ont été considérées. Le système est caractérisé par 24 lignes de transport, 47 transformateurs et aucune compensation réactive.

	LIGNES - MALI					
Nom	ı de la ligne	Longueur	Tension d'exploitation	Limite thermique		
_	,	[km]	[kV]	[MVA]		
de	à					
Manantali	Kayes (SENEGAL)	184	225	250		
Manantali	Kodialani	306	225	N/A		
Fana	Ségou	109	150	N/A		
Kalabancoro	Sirakoro	17	150	N/A		
Kodialani	Lafiabougou	6.42	150	N/A		
Kodialani	Kalabancoro	5	150	N/A		
Sirakoro	Sélingué	118	150	N/A		
Sirakoro	Balingué	12	150	N/A		
Sirakoro	Fana	112	150	N/A		
Sélingué	Yanfolila	68.5	63	N/A		
Balingué	Koulikoro	49.5	33	N/A		
Balingué	Sotuba	4.4	33	N/A		
Balingué	Pont des Martryr1	3.5	33	N/A		
Balingué	Pont des Martryr2	3.5	33	N/A		
Darsalam	Martyr 1(aérien)	4	33	N/A		
Darsalam	Martyr 2	4.9	33	N/A		
Fana	Dioïla	35.7	33	N/A		
Lafiabougou	Darsalam	8.385	33	N/A		
Lafiabougou	Badalabougou	6	33	N/A		
Pont Martyr	Badalabougou (ancien)	1.9	33	N/A		
Pont Martyr	Badalabougou (nouveau)	1.9	33	N/A		
Ségou(Pélengana)	Markala	40	33	N/A		
Sotuba	Badalabougou	7.7	33	, N/A		
Yanfolila	Kalana	48.5	33	N/A		

Table 51 - Lignes de transport - Mali

	•	-	TRANSFORM	IATEURS - MALI	•		•
Sous-station	V1 (kV)	V2 (kV)	Sn (MVA)	Sous-station	V1 (kV)	V2 (kV)	Sn (MVA)
Badalabougou	16.5	31.5	20	Kalabancoro	7.045	150	10
Badalabougou	0.4	15	0.16	Kalabancoro	0.4	15	0.15
Balingué	16.5	31.5	7.5	Kalana	6.6	33	5
Balingué	16.5	31.5	6	Koulikoro	15	30	7.5
Balingué	15	150	60	Lafiabougou	15.5	150	30
Balingué	15	150	54	Lafiabougou	7.045	150	10
Balingué	15	30	24	Lafiabougou	0.4	15	0.15
Balingué	10	150	20	Ségou	15.5	150	10
Balingué	6.6	15	2.8	Ségou	15	30	5
Balingué	0.4	15.5	3	Ségou	15	30	5
Balingué	0.4	15	2	Ségou	15	400	0.15
Darsalam	16.5	31.5	10	Ségou	0.4	15	0.8
Darsalam	11	33	30	Sélingué	33	63	Dec-16
Darsalam	5.5	16.5	8	Sélingué	8.66	150	39/54
Darsalam	5.5	15.5	7	Sélingué	8.66	33	14/20
Darsalam	5.5	15.5	5.3	Sirakoro	15.5	150	22.5
Darsalam	0.4	15.5	1.6	Sotuba	16.5	31.5	8.3
Darsalam	0.4	15.5	1.6	Sotuba	15	30	7.5
Darsalam	0.4	15.5	1.6	Sotuba	2	31.5	3.4
Dioila	0.41	30	1	Sotuba	2	31.5	3.4
Fana	15.5	150	10	Sotuba	0.41	31.5	0.315
Fana	15	30	5	Yanfolila	33	63	12
Fana	15	400	0.15	Yanfolila	0.4	33	0.25
Kalabancoro	15.5	150	30				

Table 52 – Transformateurs – Mali

4.1.8. Côte d'Ivoire

La situation actuelle du système de la Côte d'Ivoire est présentée aux trois tables suivantes (lignes, transformateurs, shunts).

Les infrastructures connectées à une tension supérieure ou égale à 90 kV ont été considérées. Le système est caractérisé par 71 lignes de transport, 44 transformateurs et 13 compensations réactives.

				LINES - CÔTI	E D'IVOIRE				
Nom de	la ligne	Longueur [km]	Tension d'exploitation [kV]	Limite Thermique [MVA]		e la ligne	Longueur [km]	Tension d'exploitation [kV]	Limite Thermique [MVA]
de	à				de	à			
Abobo	Azito	16.7	225	327	Bouake	Serebou	132	90	75
Abobo	Azito	16.7	225	327	Bouake	Bouake	26.4	90	75
Abobo	Azito	16.7	225	327	Bouake	Kossou	115.3	90	72
Abobo	Yopougon	8.4	225	327	Boundiali	Korhogo	103.5	90	75
Azito	Vridi	12.2	225	330	Buyo	Daloa	112	90	75
Bouake	Kossou	109.9	225	327	Daloa	Kossou	110.6	90	75
Buyo	Soubre	82.2	225	327	Dimbokro	Attakro	103.9	90	75
Ferke	Bouake	233.8	225	327	Divo	Hire	32	90	75
Ferke	Kodeni (BF)	221.8	225	327	Gagnoa	Kossou	120	90	72
Kossou	Taabo	124	225	246	Gagnoa	Divo	81	90	75
Man	Buyo	193.2	225	327	Hire	Taabo	32	90	75
Man	Laboa	152	225	246	Korhogo	Ferke	48.3	90	72
Prestea (GHN)	Abobo	220	225	327	Kossou	Yamoussokro	53.3	90	72
Riviera	Vridi	19.6	225	327	Laboa	Seguela	82	90	75
Soubre	Taabo	196	225	327	Laboa	Man	152	90	132
Soubre	San Pedro	117	225	327	Man	Danane	76.8	90	75
Taabo	Abobo	170	225	246	Odienne	Boundiali	123.1	90	75
Taabo	Abobo	170	225	327	Odienne	Laboa	122.2	90	75
Yopougon	Azito	8.4	225	327	Plateau	Treichville	3.8	90	75
Abobo	Bianord	5	90	72	Plateau	Treichville	3.8	90	75
Abobo	Bianord	5	90	72	Plateau	Bianord	2.5	90	75
Abobo	Bongo	58.1	90	75	Riviera	Bassam	28.6	90	72
Abobo	Plateau	2.5	90	75	San Pedro	Faye	38	90	75
Abobo	Dabou	58	90	75	Sir	Vridi	7	90	75
Abobo	Yopougon	13.8	90	72	Soubre	San Pedro	117	90	132
Agboville	Yopougon	34	90	75	Taabo	Dimbokro	72.2	90	75
Agnibilikro	Abengourou	53	90	75	Taabo	Agboville	119	90	75
Attakro	Abengourou	40	90	75	Treichville	Vridi	6.5	90	100
Ayame	Ayame	4	90	72	Treichville	Vridi	6.5	90	100
Ayame	Abrobakro	59	90	72	Vridi	Biasud	8	90	72
Bassam	Abrobakro	25	90	72	Vridi	Biasud	8	90	72
Bianord	Riviera	10.3	90	72	Yamoussokro	Dimbokro	67.4	90	72
Biasud	Riviera	11	90	72	Yopougon	Abobo	34	90	75
Biasud	Riviera	11	90	72	Yopougon	Vridi	15.7	90	72
Bongo	Ayame	65.7	90	72	Zuenoula	Kossou	92.7	90	75
Bouake	Marabadiasa	82	90	75	-		-		-

Table 53 – Lignes de transport – Côte d'Ivoire

		TRA	NSFORMATEUR	RS - CÔTE D'IVOIRE			
Sous-station	V1 (kV)	V2 (kV)	Sn (MVA)	Sous-station	V1 (kV)	V2 (kV)	Sn (MVA)
Abobo	225	93	70	Laboa	225	93	50
Abobo	225	93	70	Man	225	93	70
Abobo	225	93	70	Riviera	225	90	70
Abobo	225	93	70	San Pedro	225	93	65
Ayame	5.5	90	15	San Pedro	225	93	70
Ayame	5.5	90	19	Soubre	225	93	70
Ayame	5.5	90	15	Taabo	225	93	70
Ayame	5.5	90	19	Taabo	225	93	70
Ázito	15.75	230	190	Taabo	13.8	235	82.5
Azito	15.75	230	190	Taabo	13.8	235	82.5
Azito	15.75	230	190	Taabo	13.8	235	82.5
Bouake	225	93	70	Vridi	225	93	70
Buyo	225	93	70	Vridi	225	93	70
Buyo	10.5	235	61	Vridi	225	93	70
Buyo	10.5	235	61	Vridi	11	97	51
Buyo	10.5	95	82.5	Vridi	11	97	51
Ciprel .	11	97	151	Vridi	11	97	51
Ferke	225	96	65	Vridi	11	235	61
Kossou	225	96	65	Vridi	11	235	61
Kossou	17	240	72	Vridi	15	236	151
Kossou	17	240	72	Yopougon	225	93	100
Kossou	17	95	72	Yopougon	225	93	100

Table 54 – Transformateurs – Côte d'Ivoire

Со	ndensate	eurs et Selfs	shunt -	CÔTE D'IVOIRE	
Sous-station	Туре	Tension (kV)	Bancs	Capacité /banc (MVAr)	Capacité (MVAr)
Abobo	Capa.	15	3	-7.2	-14.4
Bia - Nord	Capa.	15	5	-7.2	-21.6
Bia - Sud	Capa.	15	4	-7.2	-21.6
Plateau	Capa.	15	2	-7.2	-14.4
Riviera	Capa.	15	1	-7.2	-7.2
Treichville	Capa.	15	3	-7.2	-21.6
Vridi	Capa.	15	3	-7.2	-21.6
Yopougon	Capa.	15	5	-7.2	-21.6
Bouake	Ind.	90	1	20	0
Ferke	Ind.	225	1	40	40
Laboa	Ind.	225	1	20	20
Man	Ind.	225	1	20	20
Soubre	Ind.	225	1	40	40

Table 55 – Shunts – Côte d'Ivoire

4.1.9. Ghana

La situation actuelle du système du Ghana est présentée aux quatre tables suivantes (lignes, transformateurs, capacités, selfs).

Les infrastructures connectées à une tension supérieure ou égale à 69 kV ont été considérées. Le système est caractérisé par 82 lignes de transport, 99 transformateurs et 29 compensations réactives.

				LINES - G	HA NA				
Nom de	la ligne	Longueur [km]	Tension d'exploitation [kV]	Limite Thermique [MVA]		le la ligne	Longueur [km]	Tension d'exploitation [kV]	Limite Thermique [MVA]
de	à				de	à			
Akosombo	Kpong SS-1	16.1	161	213	Tarkwa	New Tarkwa	8.3	161	170
Akosombo	Kpong SS-2	16.1	161	213	Prestea	Abobo (IC)	220	225	327
Kpong SS	Volta-1	51.5	161	213	Border	Abobo	145.6	225	327
Kpong SS	Volta-2	51.5	161	213	Prestea	Bogoso	13	161	150
Akosombo	Volta-1	67.6	161	213	Bogoso	Dunkwa	66	161	150
Akosombo	Volta-2	67.6	161	213	Bogoso	Wexford	51	161	182
Akosombo	Volta-3	67.6	161	213	Dunkwa	Asawinso	69.2	161	142
Akosombo	Volta-4	67.6	161	213	Dunkwa	New Obuasi	24.9	161	170
Akosombo	Kpong GS	24.6	161	213	New Obuasi	Obuasi	7.1	161	170
Kpong GS	Volta	63.2	161	273	Kumasi	Tow26-2	10	161	364
Akosombo	Tafo-1	61.2	161	170	Tow26-2	Kenyasi	94	161	244
Akosombo	Tafo-2	61.2	161	182x2	Obuasi	Tow26-1	43.1	161	170
Akosombo	Asiekpe	54.7	161	128	Tow26-1	Kenyasi	94	161	244
Asiekpe	Lome (TOG)	54.7	161	128	Kumasi	New Obuasi	_	161	364
Akosombo	Aflao	124.8	161	128	Prestea	Obuasi	112.2	161	182x2
Aflao	Lome (TOG)	3.9	161	128	New Obuasi	Akwatia	110	161	244
Akosombo	Kumasi	226.3	161	182x2	Kumasi	Konogo	51.5	161	170
Volta	Smelter-1	5.2	161	213	Konogo	Nkawkaw	53.1	161	170
Volta	Smelter-2	5.2	161	213	Nkawkaw	Tafo	59.5	161	170
Volta	Smelter-3	5.2	161	213	Tafo	Akwatia	54.7	161	170
Volta	Smelter-4	5.2	161	213	Kumasi	Techiman	115	161	182x2
Volta	Smelter-5	5.2	161	213	Techiman	Sunyani	54.9	161	244
Volta	Smelter-6	5.2	161	213	Techiman	Tamale	248.1	161	182x2
Volta	New Tema-1	3.2	161	182x2	Techiman	Teselima	89.1	161	182x2
Volta	New Tema-2	3.2	161	182x2	Teselima	Sawla	128.6	161	182
Volta	Achimota-1	25.7	161	213	Tamale	Bolgatanga	158.1	161	244
Volta	Achimota-2	25.7	161	213	Tamale	Yendi	100	161	182
Volta	Achimota-3	25.7	161	213	Sunyani	Kenyasi	40	161	182x2
Achimota	Mallam	15	161	170	Aboadze	Volta	215	330	500x2
Achimota	Winneba	57.9	161	170	Sawla	Wa	95	161/34.5	182/39
Mallam	Cape Coast	116.9	161	150	Asiekpe	Но	44	69	57
Winneba	Aboadze	132	161	150	Но	Kpeve	22	69	57
Cape Coast	Aboadze	58	161	150	Kpeve	Kpandu	35.6	69	57
Aboadze	Prestea	83	161	182x2	Asiekpe	Sogakofe	31.2	69	57
Aboadze	Takoradi-1	15	161	170	Sunyani	Mim	60	161/34.5	182/39
Aboadze	Takoradi-2	15	161	170	Bolgatanga	Bawku	80	161/34.5	182/39
Takoradi	Essiama	70.5	161	182	Bawku	Dapaong (TOG)		161/34.5	182/39
Essiama	Barge (OPB)	-	161	364	Volta	Asogli (Dum)	-	161	213
Barge (OPB)	Elubo	_	161	364	New Tema	TT1P	_	161	213
Takoradi	Tarkwa	51.5	161	170	Afloa	DCEM	_	161	180
New Tarkwa	Prestea	21.9	161	170	Asogli	Asogli (Dum)	_	161	324

Table 56 – Lignes de transport – Ghana

	TRANSFORMATEURS - GHANA									
Sous-station	V1 (kV)	V2 (kV)	V3 (kV)		Sous-station	V1 (kV)	V2 (kV)	V3 (kV)	Sn (MVA)	
Achimota	161	34.5	• 5 (K•)	66	Mallam	161	34.5	15 (KT)	66	
Aboadze	13.8	169		#	New Obuasi	161	11.5	6.58	33	
Aboadze	13.8	169		#	New Obuasi	161	11.5	6.58	33	
Aboadze	13.8	169		#	New Obuasi	161	11.5	6.58	33	
Aboadze	13.8	161		#	New Tarkwa	161	11.5	6.6	33	
Aboadze	13.8	161		#	New Tarkwa	161	11.5	6.6	33	
Achimota	161	34.5		66	New Tema	161	11.5	3.3	20	
Achimota	161	34.5		66	New Tema	161	34.5	5.5	66	
Achimota	161	34.5		66	New Tema	161	34.5		33	
Achimota	161	34.5		66	New Tema	161	34.5		66	
Achimota	161	34.5		33	New Tema	161	34.5		66	
Ahafo	161	11.5		40/53	New Tema Nkawkaw	161	11.5	6.64	13.3	
Ahafo	161	11.5		40/53	Obuasi	161	6.64	11.5	20	
Akosombo	14.4	161		#	Obuasi	161	6.64	11.5	20	
Akosombo	14.4	161		#	Obuasi	161	6.64	11.5	20	
				#		161	34.5	11.5	33	
Akosombo Akosombo	14.4 14.4	161 161		#	Old Knong	161			33	
				#	Old Kpong		34.5	c c2		
Akosombo	14.4	161		#	Prestea	161	55	6.63	13.3	
Akosombo	14.4	161			Prestea	161	55	6.63	20	
Akosombo	161	11.5	c c2	13	Prestea	225	161	13.2	200	
Akwatia	161	11.5	6.63	5	Prestea	225	161	13.2	200	
Akwatia	161	34.5		13	Prestea	13.2	161		26.7	
Asawinso	161	34.5		13	Sawla	161	36		13.3	
Asawinso	161	34.5	44.7	33	Smelter	161	13.8		18	
Asiekpe	161	74.29	11.7	33	Smelter	161	13.8		18	
Asiekpe	161	74.29	11.7	33	Smelter	161	13.8		85	
Bogoso	161	34.5		33	Smelter	161	13.8		85	
Bogoso	161	34.5	44.5	33	Smelter	161	13.8		85	
Bolgatanga	161	36	11.5	20	Smelter	161	13.8		85	
Cape Coast	161	11.5	6.64	13	Smelter	161	13.8		85	
Cape Coast	161	34.5	11.5	33	Smelter	161	13.8		85	
Dunkwa	161	11.5	6.63	5	Sogakope	69	34.5		15	
Elubo	225	161		#	Sunyani	161	36	11.5	20	
Essiama	161	34.5		33	Sunyani	161	36	11.5	20	
Ho	69	11.65		7	Tafo	161	11.5	6.64	13.3	
Konongo	161	11.5	6.63	5	Tafo	161	34.5		33	
Konongo	161	11.5	6.63	5	Takoradi	161	34.5		33	
Kpando	69	34.95	6.6	20	Takoradi	161	34.5		33	
Kpeve	69	34.95		7	Tamale	161	36	11.5	20	
Kpong Gs	13.8	169		51	Tamale	161	36	11.5	20	
Kpong Gs	13.8	169		51	Tarkwa	161	34.5		33	
Kpong Gs	13.8	169		51	Tarkwa	161	34.5		33	
Kpong Gs	13.8	169		51	Techiman	161	36	11.5	20	
Kpong Gs	161	11.5		5	Techiman	161	34.5		20	
Kumasi	161	11.5	6.6	18	Wexford	161	34.5		33	
Kumasi	161	11.5	6.6	18	Winneba	161	11.5	6.63	5	
Kumasi	161	34.5		66	Winneba	161	11.5	6.64	20	
Kumasi	161	34.5		66	Yendi	161	34.5		13.3	
Kumasi	161	34.5		33	Zebila	161	34.5		33	
Mallam	161	34.5		66						

Table 57 – Transformateurs – Ghana

		Capacités S	Shunt - G	HANA	
Sous-station	Туре	Tension (kV)	Bancs	Capacité /banc (MVAr)	Capacité (MVAr)
Achimota	Capa.	34.5	2	-22.6	-45.2
Achimota	Capa.	34.5	2	-21.6	-43.2
Asawinso	Capa.	34.5	1	-10.8	-10.8
Cape Coast	Capa.	11.5	1	-1.2	-1.2
Kenyase	Capa.	11	1	SVC	-40
Kpando	Capa.	34.5	1	-5.4	-5.4
Kumasi	Capa.	11.5	2	-1.8	-1.8
Kumasi	Capa.	11.5	1	-5.4	-5.4
Kumasi	Capa.	34.5	2	-10.8	-21.6
Kumasi	Capa.	34.5	1	-12	-12
Kumasi	Capa.	161	1	-25	-25
Kumasi	Capa.	34.5	1	-21.6	-21.6
Mallam	Capa.	34.5	2	-10.8	-21.6
New Obuasi	Capa.	11.5	3	-5.4	-16.2
New Tema	Capa.	34.5	1	-10.8	-10.8
Obuasi	Capa.	6.6	4	-1.8	-7.2
Prestea	Capa.	6.6	4	-1.2	-4.8
Prestea	Capa.	13.2	2	-20	-40
Smelter	Capa.	14.4	4	-21.6	-86.4
Suniany	Capa.	34.5	2	-5.4	-10.8
Suniany	Capa.	11.5	2	-5.4	-10.8
Takoradi	Capa.	34.5	3	-10.8	-32.4
Techiman	Capa.	34.5	1	-10.8	-5.4
Winneba	Capa.	34.5	2	-10.8	-21.6

Table 58 – Capacités Shunt – Ghana

	Selfs Shunt - GHANA								
Sous -station	Tension	Bancs	Capacité (MVAr)						
	(kV)		Min	Max					
Bolga	161	16	8.5	17					
Tamale	161	16	8.5	17					
Tamale	161	16	8.5	17					
Techiman	161	16	8.5	17					
Sawla	161	16	8.5	17					

Table 59 – Self shunt – Ghana

4.1.10. Togo/Bénin

La situation actuelle du système du Togo et du Bénin est présentée aux trois tables suivantes (lignes, transformateurs, shunts).

Les infrastructures connectées à une tension supérieure ou égale à 63 kV ont été considérées. Le système est caractérisé par 42 lignes de transport, 64 transformateurs et 3 aucune compensations réactives.

	LIGNES - TOGO/BENIN									
Nom	de la ligne	Longueur [km]	Tension d'exploitation [kV]	Limite thermique [MVA]						
de	à									
Ikeja West (NIG)	Sakete	75	330	686						
Atakpamé	Nangbéto	36.5	161	120						
Ava	Momé Hagou	54	161	105						
Bohicon	Onigbolo	75	161	120						
Dapaong	Bawku (GHN)	65	161	182						
Djougou	Parakou	131	161	120						
Kara	Atakpamé	239	161	120						
Kara	Djougou	58	161	120						
Kara	Mango	137	161	120						
Lomé Aflao	Asiekpe (GHN)	54.7	161	128						
Lomé Aflao	Aflao (GHN)	3.9	161	128						
Lomé Port	Lomé Aflao 1	17.2	161	120						
Lomé Port	Lomé Aflao 2	17.2	161	120						
Mango	Dapaong	75	161	120						
Maria Gréta	Cotonou Vêdoko 1	11	161	120						
Maria Gréta	Cotonou Vêdoko 2	11	161	120						
Maria Gréta	Cotonou Vêdoko 3	11	161	120						
Maria Gréta	Cotonou Vêdoko 4	11	161	120						
Maria Gréta	Ava	38	161	105						
Maria Gréta	Momé Hagou	92	161	105						
Momé Hagou	Lomé Aflao 1	56	161	105						
Momé Hagou	Lomé Aflao 2	56	161	105						
Momé Hagou	Nangbéto	116	161	120						
Nangbéto	Bohicon	80.3	161	120						
Parakou	Onigbolo	300	161	120						
Sakété	Maria Gréta 1	55	161	120						
Sakété	Maria Gréta 2	55 55	161	120						
Sakété	Tanzoun1	28	161	120						
Sakété	Tanzoun2	28	161	120						
Sakété		26 47		120						
	Onigbolo		161							
Sakété	Cotonou Vêdoko	N/A	161	N/A						
Birnin-Kebbi (NIG)	Niamey	252	132	84.6						
Kara	Sokodé	76	66	30						
CAK	PNO	33	63	65						
CGB	CAK	5.5	63	90						
Cotonou Vêdoko	CGB	4.43	63	90						
Momé Hagou	CIMAO	10	63	40						
Momé Hagou	Anfouin	20	63	90						
Momé Hagou	Lokossa	29	63	90						
Momé Hagou	Scantogo	15	63	40						
TAN	PNO	70	63	90						
TAN	PNO	70	63	90						

Table 60 – Lignes de transport – Togo/Benin

			7	RANSFO	MATEURS - TOGO/BENIN				
Sous-station	V1 (kV)	V2 (kV)	V3 (kV)	(MVA)	Sous-station	V1 (kV)	V2 (kV)	V3 (kV)	Sn (MVA)
Anfoin	161	20		17	Lomé Aflao	161	21	10.5	35
Atakpamé	161	20		16	Lome Port	161	20		35
Atakpamé	161	20		16	Lome Port	161	20		25
Avakpa	155	15		19	Lome Port	11	161		35
Bembereke	161	34	20	13	Lomé Port GT CE	11	166		32
Bembereke	161	34	20	13	Lomé Port Sub	161	20		
Bohicon	161	20		20	Lomé Port Sub	161	20		
Bohicon	161	63		20	Malanville	161	34	20	12.5
CIN	161	20		35	Malanville	161	34	20	12.5
ContorGlobal	15	161		63	Mango	161	20		12.5
ContorGlobal	15	161		63	Mango	161	20		12.5
ContorGlobal	15	20		20	Maria Gléta	161	15		19
Cotonou Apkapka	63	15		20	Maria Gléta GT CE	11	161		32
Cotonou Apkapka	63	15		20	Mome Hagou	161	63		50
Cotonou Apkapka	5.5	63		10	Mome Hagou	161	63		50
Cotonou Apkapka	5.5	63		10	Nangbéto	10.3	166		35.5
Cotonou Apkapka	5.5	15		4	Nangbéto	10.3	166		35.5
Cotonou Apkapka	5.5	15		4	Nangbéto	10.3	161		35.5
Cotonou Gbegamey	62	15		20	Nangbéto	10.3	161		35.5
Dapaong	161	34	20	13	Onigbolo	161	20		35
Dapaong	161	34	20	13	Onigbolo	161	20		35
Djougou	161	34	20	20	Parakou	161	34	20	20
Kandi	161	34	20	13	Sakete	330	161		200
Kandi	161	34	20	13	Sakete	330	161		200
Kara	161	34	22	20	Sakete	161	20		35
Kara	161	34	22	20	Sokode	161	66	20	50
Legbassito	161	20		50	Sokode	161	66	20	50
Legbassito	161	20		50	Tanzoun	161	63	20-15	80
Lokossa	63	20		17	Tanzoun	161	63	20-15	80
Lokossa	63	20		17	Vedoko	161	63		80
Lomé Aflao	161	21	10.5	50	Vedoko	161	63	15	55
Lomé Aflao	161	21	10.5	50	Vedoko	161	15		40

Table 61 – Transformateurs – Togo/Benin

Condensateurs et Selfs shunt - TOGO/BENIN									
Sous-station	Туре	Tension (kV)	Bancs	Capacité /banc (MVAr)	Capacité (MVAr)				
Kara	ind.	161	-	-	18				
Onigbolo	ind.	161	3	3	9				
Parakou	ind.	161	3	3	9				

Table 62 – Shunts – Togo/Benin

4.1.11. Burkina Faso

La situation actuelle du système du Burkina Faso est présentée aux trois tables suivantes (lignes, transformateurs, shunts).

Les infrastructures connectées à une tension supérieure ou égale à 33 kV ont été considérées. Le système est caractérisé par 40 lignes de transport, 76 transformateurs et 19 compensations réactives.

LIGNES - BURKINA FASO									
Nom	le la ligne	Longueur	Tension	Limite					
			d'exploitation	thermique					
		[km]	[kV]	[MVA]					
de	à								
Ferke (IC)	Kodeni	221	225	327					
Kodeni	Pa	134	225	327					
Pa	Zagtouli	204	225	327					
Bagre	Zano	32	132	110					
Kompienga	Zano	140	132	110					
Zano	Patte D'Oie	143	132	110					
Zagtouli	Koudougou	82	90	75					
Ouaga1	Ouaga2	5	90	75					
Ouaga1	P.C	4	90	75					
Patte D'Oie	Zagtouli	32	90	75					
P.C	Kossodo	4	90	72					
Zagtouli	Ouaga2	15	90	72					
Kossodo	Ziniaré	30	33	21					
Koupèla	Tenkodogo	55	33	21					
Kombissiri	Manga	56	33	21					
Tenkodogo	Zano	10	33	21					
Ziga	Ziniaré	52	33	21					
Ziniaré	Kaya	90	33	21					
Zano	Koupèla	42	33	21					
Bobo1	Bobo2	4	33	17					
Kodeni	Bobo2	4	33	17					
Kodeni	Bobo2	4	33	17					
Koua	Bobo1	8	33	17					
Koua	Kodeni	12	33	17					
Kodeni	P.D	64	33	17					
P.D	Banfora	18	33	17					
P.D	Orodara	32	33	17					
Banfora	Niofila	42	33	17					
Niofila	Tourni	10	33	17					
Komsilga	Ouaga 2000	7	33	17					
Kossodo	Ouaga1	, 7	33	17					
Kossodo	Ouaga2	12	33	17					
Ouaga 2000	Patte D'Oie	5	33	17					
Ouaga1	Ouaga2	5	33	17					
Patte D'Oie	Ouaga2	14	33	17					
Patte D'Oie	Kossodo	13	33	17					
Zagtouli	Komsilga	15	33	17					
Kompienga	Pama	35	33	11					
Ouaga 2000	Kombissiri	53	33	11					
Banfora	Niangoloko	49	33	8					

Table 63 – Lignes de transport – Burkina Faso

			TRANSFOR	RMATEURS - BURKINA	FASO	-		
Sous-station	V1 (kV)	V2 (kV)	Sn (MVA)	Sous-station	V1 (kV)	V2 (kV)	Sn (MVA)	
BAGRE	132	6.6	10	KOUA	33	15	, ,	10
BAGRE	132	6.6	10	KOUA	33	15		10
BAGRE	6.6	132	10	KOUDOUGOU	33	15		6
BAGRE	6.6	132	10	KOUDOUGOU	5.5	15		2
BANFORA	33	20	5	KOUDOUGOU	5.5	15		2
BOBO1	33	15	10	KOUDOUGOU	5.5	15		2.5
BOBO1	33	15	10	KOUDOUGOU	0.4	15		1
BOBO1	5.5	15.75	2	KOUDOUGOU	0.4	15		0.8
BOBO1	5.5	15.75	2	NIOFILA	0.4	33		1
BOBO1	5.5	15	2	NIOFILA	0.4	33		1
BOBO1	5.5	15	2	OUAGA 1	90	33		30-40
BOBO2	33	15	10	OUAGA 1	33	16		15
BOBO2	33	15	10	OUAGA 1	33	16		15
BOBO2	5.5	34.5	5	OUAGA 1	33	16		15
BOBO2	5.5	34.5	5	OUAGA 1	6.3	15.75		4
BOBO2	5.5	34.5	5	OUAGA 1	6.3	15.75		4
BOBO2	5.5	15	4.75	OUAGA 1	5.5	16.68		5
BOBO2	5.5	15	4.75	OUAGA 2	90	33		30-40
KODENI	225	35.5	40	OUAGA 2	35.5	15		15
KODENI	225	35.5	40	OUAGA 2	35.5	15		15
KODENI	33	34.5	5	OUAGA 2	5.5	16.4		6.6
KOMPIENGA	132	6.6	10	OUAGA 2	5.5	16.4		6.6
KOMPIENGA	132	6.6	10	OUAGA 2	5.5	16.4		6.6
KOMPIENGA	6.6	132	10	OUAGA 2	5.5	16.4		10.65
KOMSILGA	11	33	25	OUAGA 2	5.5	16.4		10.65
KOSSODO	90	33	30-40	OUAGA 2000	33	15		15
KOSSODO	90	33	30-40	OUAGA 2000	33	15		_ 15
KOSSODO	33	16	15	PA	225	33	34.5	10/5/5
KOSSODO	33	16	15	PATTE D'OIE	132	33		10
KOSSODO	33	15	15	PATTE D'OIE	132	33		10
KOSSODO G1	11	34.5	5	PATTE D'OIE	132	33		10
KOSSODO G2	15	33	8	PATTE D'OIE	33	15.89		15
KOSSODO G3	15	33	8	PATTE D'OIE	33	15.89		15
KOSSODO G4	11	33	8	TOURNI	0.4	33		1
KOSSODO G5	11	33	8	ZAGTOULI	225	90		70
KOSSODO G6	11	35	10.5	ZAGTOULI	225	90		70
KOSSODO G7	11	35	10.5	ZAGTOULI	90	33	34.5	20/15/5
KOSSODO G8	11	34.5	23	ZANO	132	33		5

Table 64 – Transformateurs – Burkina Faso

	Conde	nsateurs et Self	s shunt -	BURKINA FASO	
Sous-station	Туре	Tension (kV)	Bancs	Capacité	Capacité (MVAr)
				/banc (MVAr)	
BANFORA	Capa.	20.0	4	-0.6	-2.4
KOSSODO	Capa.	15.0	1	-0.9	-0.9
KOSSODO	Capa.	15.0	2	-0.7	-1.4
KOSSODO	Capa.	15.0	1	-4.8	-4.8
OUAGA1	Capa.	15.0	1	-0.3	-0.3
OUAGA1	Capa.	15.0	1	-0.6	-0.6
OUAGA1	Capa.	15.0	1	-4.8	-4.8
OUAGA1	Capa.	15.0	5	-1.2	-6.0
OUAGA2	Capa.	15.0	1	-3.0	-3.0
OUAGA2	Capa.	15.0	2	-1.5	-3.0
OUAGA2	Capa.	15.0	4	-4.8	-19.2
OUAGA2000	Capa.	15.0	1	-4.8	-4.8
PATTE D'OIE	Capa.	15.0	1	-4.8	-4.8
KODENI	Ind.	225.0	21	1.4	30.0
KOMPIENGA	Ind.	132.0	1	4.5	4.5
PA	Ind.	225.0	1	30.0	30.0
PATTE D'OIE	Ind.	132.0	1	4.5	4.5
PATTE D'OIE	Ind.	33.0	1	3.5	3.5
ZAGTOULI	Ind.	225.0	2	15.0	30.0

Table 65 - Shunts - Burkina Faso

4.1.12. Niger

La situation actuelle du système du Niger est présentée aux trois tables suivantes (lignes, transformateurs, shunts).

Les infrastructures connectées à une tension supérieure ou égale à 66 kV ont été considérées. Le système est caractérisé par 11 lignes de transport, 21 transformateurs et 3 compensations réactives.

	LIGNES - NIGER									
No	m de la ligne	Longueur	Tension d'exploitation	Limite thermique						
		[km]	[kV]	[MVA]						
de	à									
Dosso	Niamey 2	132	132	N/A						
Gazoua	Kastina (NIG)	72	132	84.6						
Gazoua	Dosso	78	132	N/A						
Goudel	Karma	32	66	N/A						
Goudel	Niamey Nord	9	66	N/A						
Karma	Lossa	41	66	N/A						
Kollo	Say	22	66	N/A						
Lossa	Tillabéry	30	66	N/A						
Niamey 2	Kollo	31	66	N/A						
Niamey 2	Niamey Nord	13	66	N/A						
Niamey Nord	Goudel	4	66	N/A						

Table 66 – Lignes de transport – Niger

Т	RANSFORM	ATEURS -	NIGER	-
Sous-station	V1 (kV)	V2 (kV)	V3 (kV)	Sn (MVA)
Dosso	132	20	0.38	5
Goudel	66	20		10
Goudel	66	20		10
Goudel	20	5.65		16
Karma	66	20		2
Kollo	66	20		2
Lossa	66	20		2
Lossa	66	33		10
Niamey 2	132	66		15
Niamey 2	132	66		10
Niamey 2	132	20		20
Niamey 2	132	20		20
Niamey 2	20	10.5		16
Niamey 2	20	10.5		16
Niamey 2	20	5		4
Niamey 2	20	5		4
Niamey 2	20	5		4
Niamey 2	20	5		4
Niamey Nord	66	20		10
Say	66	20		6.3
Tillabéry	66	20		6.3

Table 67 – Transformateurs – Niger

	Condensateurs et Selfs shunt - NIGER										
Sous-station	Туре	Tension (kV)	Bancs	Capacité /banc (MVAr)	Capacité (MVAr)						
Goudel	ind.	20	-	-	4						
Niamey 2	ind.	20	-	-	5						
Niamey 2	ind.	20	-	-	5						

Table 68 – Shunts – Niger

4.1.13. Nigéria

La situation actuelle du système du Nigeria est présentée aux trois tables suivantes (lignes, transformateurs, shunts).

Les infrastructures connectées à une tension supérieure ou égale à 132 kV ont été considérées. Le système est caractérisé par 191 lignes de transport, 286 transformateurs et 18 compensations réactives.

AI-	lo la lieno	lar		LIGNES - NIGER		a la lieu -	lane	Tom-!	17
Nom	de la ligne	Longueur	d'exploitation	Limite thermique	Nom d	e la ligne	Longueur	d'exploitation	Limite thermiqu
_		[km]	[kV]	[MVA]	_		[km]	[kV]	[MVA]
de	à				de	à			
Afam	Alaoji	25	330	777	Afam	Alaoji	29	132	91
Afam	Alaoji	25	330	777	Afam	Alaoji	29	132	91
Aja	Egbin	14	330	777	Afam	P.H. Main	33	132	91
Aja	Egbin	14	330	777	Afam	P.H. Main	33	132	91
Ajaokuta	Benin	195	330	777	Agbara	Ikeja West	22	132	126
Ajaokuta	Benin	195	330	777	Agbara	Ikeja West	22	132	126
Akangba	Ikeja West	18	330	777	Agbara	Ojo	16	132	126
Akangba	Ikeja West	18	330	777	Agbara	Ojo	16	132	126
Aladja	Delta	32	330	777	Aja	Alagbon	20	132	N/A
Aladja	Sapele	63	330	777	Aja	Alagbon	20	132	N/A
Alaoji	Onitsha	138	330	777	Ajaokuta	Ajaokuta Town	10	132	91
Ayede	Oshogbo	119	330	777	Ajaokuta	Itakpe	45	132	91
Ayede	Ikeja West	137	330	777	Ajaokuta Town		60	132	91
Benin	Delta	107	330	777	Akangba	Ijora	5	132	91.5
Benin	Sapele	50	330	777	Akangba	Ijora Ijora	5	132	91.5
Benin	Sapele	50	330	777	Akangba A	Isolo	6	132	91.5
Benin	Sapele	50	330	777	Akangba A	Isolo	6	132	91.5
Benin	Ikeja West	280	330	777	Akangba B	Amuwo-Odofin	5	132	126
Benin	Ikeja West	280	330	777	Akangba B	Itire	3	132	126
Benin	Onitsha	137	330	777	Akangba B	Itire	3	132	126
Benin	Oshogbo	251	330	777	Akangba C	Apapa-Road	8	132	N/A
Birnin-Kebbi	Kainji	310	330	720	Akoka	Alagbon	13	132	126
Egbin	Ikeja West	62	330	777	Akoka	Ijora	10	132	126
Egbin	Ikeja West	62	330	777	Akoka	Oworonshoki	4	132	126
Gombe	Jos	265	330	720	Akoka	Oworonshoki	4	132	126
Ikeja West	Sakete (BEN)	75	330	686	Akure	Oshogbo A	92	132	70
Ikeja West	Oshogbo	235	330	777	Akwanga	Keffi	62	132	N/A
Jebba G.S.	Jebba T.S.	8	330	N/A	Alagbon	Ijora	4	132	126
Jebba G.S.	Jebba T.S.	8	330	N/A	Alaoji	Owerri	60	132	91
Jebba T.S.	Kainji	81	330	720	Alaoji	Owerri	60	132	91
Jebba T.S.	Kainji	81	330	720	Alausa	Ogba	2	132	126
Jebba T.S.	Shiroro	244	330	720	Alausa	Ogba	2	132	126
Jebba T.S.	Shiroro	244	330	720	Aliade	Makurdi	50	132	N/A
Jebba T.S.	Oshogbo	157	330	720	Aliade	Oturkpo	39	132	N/A
							60		
Jebba T.S.	Oshogbo	157	330	720	Aliade	Yandev		132	N/A
Jebba T.S.	Oshogbo	157	330	720	Alimosho	Ikeja West	3	132	126
Jos	Kaduna	197	330	720	Alimosho	Ikeja West	3	132	126
Kaduna	Kano	230	330	720	Alimosho	Ogba	9	132	126
Kaduna	Shiroro	95	330	720	Alimosho	Ogba	9	132	126
Kaduna	Shiroro	95	330	720	Amuwo-Odofin	Apapa-Road	7	132	126
Katampe	Shiroro	150	330	720	Amuwo-Odofin	Ojo	8	132	126
Katampe	Shiroro	150	330	720	Amuwo-Odofin	Ojo	8	132	126
New Haven	Onitsha	96	330	777	Ashaka Cement	Gombe	84	132	84.5
Aba	Alaoji	8	132	91	Ashaka Cement	Potiskum	94	132	84.5
Aba	Alaoji	8	132	91	Awka	Oji River	33	132	N/A
Aba	Itu	64	132	91	Awka	Onitsha	30	132	N/A
Abakaliki	Nkalagu	54	132	91	Ayede	Ibadan North	2	132	91
Abeokuta	Papalanto	35	132	91.5	Ayede	Jericho	2	132	91
Abuja	Katampe	15	132	N/A	Ayede	Sagamu	54	132	91
Abuja Abuja	Katampe	15	132	N/A N/A	Bauchi	Gombe	34 146	132	84.6
		51	132	N/A N/A	Bauchi	Jos	118	132	
Abuja	Keffi								84.6
Abuja Central	Abuja Gr. Cable	4	132	N/A	Benin	Delta	96	132	126
Abuja Central	Abuja Gr. Cable	4	132	N/A	Benin	Delta	96	132	126
Abuja Gr. Cable	Katampe	6	132	N/A	Benin	Irrua	81	132	91
Abuja Gr. Cable	Katampe	6	132	N/A	Benin	Okene	183	132	91

Table 69 – Lignes de transport – Nigeria (1/2)

			ı	IGNES - NIGER	IA				
Nom	le la ligne	Longueur	Tension	Limite	Nom	de la ligne	Longueur	Tension	Limite
		[km]	d'exploitation [kV]	thermique [MVA]			[km]	d'exploitation [kV]	thermique [MVA]
de	à				de	à			
Bida	Minna	90	132	N/A	Ilupeju	Maryland	2	132	95.5
Birnin-Kebbi	Niamey (BEN)	252	132	84.6	Ilupeju	Maryland	2	132	95.5
Birnin-Kebbi	Sokoto	130	132	84.6	Irrua	Ukpilla	43	132	N/A
Biu	Damboa	142	132	66.3	Iseyin	Iwo	71	132	91
Biu	Dadinkowa	82	132	66.3	Itu	Uyo	20	132	91
Calabar	Itu	70	132	N/A	Iwo	Oshogbo A	80	132	66.3
Dadinkowa	Gombe	44	132	84	Jos	Makeri	50	132	84.5
Dakata	Kano	18	132	N/A	Jos	Makeri	50	132	84.5
Damboa	Maiduguri	71	132	66.3	Kaduna	Kaduna Town	20	132	N/A
Dan-Agundi	Kano	9	132	84.6	Kaduna	Kaduna Town	20	132	N/A
Delta	Effurun	36	132	N/A	Kaduna	Zaria	62	132	N/A
Egbin	Ikorodu	18	132	N/A	Kankia	Kano	113	132	84.6
Egbin	Ikorodu	18	132	N/A	Kankia	Katsina	69	132	84.6
Ejigbo	Ikeja West	13	132	126	Kano	Zaria	145	132	84.6
Ejigbo	Ikeja West	13	132	126	Katampe	Kubwa	55	132	84.6
Ejigbo	Itire	8	132	126	Katampe	Suleija	55	132	85
Ejigbo	Itire	8	132	126	Kontagora	Tegina	90	132	N/A
Eket	Uvo	44	132	91	Kontagora	Yelwa	88	132	N/A
Funtua	Gusau	110	132	84.6	Kubwa	Suleija	55	132	84.6
Funtua	Zaria	70	132	84.6	Makeri	Pankshin	90	132	84.5
Gazaoua (NIGER)	Katsina	72	132	84.6	Minna	Shiroro	68	132	84.6
Gem	Onitsha	18	132	N/A	Minna	Shiroro	68	132	84.6
Gombe	Savannah	92	132	66.3	Minna	Suleija	99	132	84.6
Gusau	Talata-Mafara	85	132	84.6	Minna	Suleija	99	132	84.6
Hadejia	Kano	247	132	66	New Haven	Nkalagu	39	132	91
Ibadan North	Iwo	18	132	91	New Haven	Nkalagu	39	132	91
Ife	Ilesa Tee	15	132	91	New Haven	Oji River	44	132	91
Ife	Ondo	58	132	91	New Haven	Oturkpo	156	132	91
Ijebu-Ode	Sagamu	40	132	N/A	Numan	Savannah	85	132	66.3
Ikeja West	Ilupeju	17	132	126	Numan	Yola	50	132	66.3
Ikeja West	Ilupeju	17	132	126	Ofa	Omu-Aran	47	132	N/A
Ikeja West	Otta	10	132	126	Ofa	Oshogbo B	44	132	70
Ikeja West	Otta	10	132	126	Ogba	Otta	14	132	91.5
Ikeja West	Oworonshoki	10	132	126	Okene	Ukpilla	33	132	91
Ikeja West	Oworonshoki	10	132	126	Otta	Papalanto	10	132	91.5
Ikorodu	Maryland	20	132	126	P.H. Main	P.H. Town	3	132	91
Ikorodu	Maryland	20	132	126	P.H. Main	P.H. Town	3	132	91
Ikorodu	Sagamu Cements	40	132	N/A	Sagamu	Sagamu Cements	9	132	91
Ilesa	Ilesa Tee	20	132	91	Shiroro	Tegina	65	132	N/A
Ilesa Tee	Oshogbo B	15	132	91	Sokoto	Talata-Mafara	125	132	84.6
Ilorin	Ofa	55	132	70					

Table 70 – Lignes de transport – Nigeria (2/2)

			TRA	NSFORMATE	URS - NIGERIA				
Sous-station	V1 (kV)	V2 (kV)	V3 (kV)	Sn (MVA)	Sous-station	V1 (kV)	V2 (kV)	V3 (kV)	Sn (MVA)
Aja	330	132		150	Abuja	132	33	11	45
Aja	330	132		150	Abuja	132	33	11	45
Ajaokuta	330	132	33	162	Abuja	132	33	11	45
Ajaokuta	330	132	33	162	Abuja Central	132	33		60
Ajaokuta	330	132	33	162	Abuja Central	132	33		60
Akangba A	330	132	13.8	90	Agbara	132	33		45
Akangba A	330	132	13.8	90	Agbara	132	33		45
Akangba B	330	132	13.8	90	Aja	132	33		60
Akangba B	330	132	13.8	90	Aja	132	33		60
Akangba C	330	132	33	150	Ajaokuta Town	132	11		15
Alaoji	330	132	33	150	Ajaokuta Town	132	11		15
Alaoji	330	132	33	150	Akangba A	132	33		60
Ayede	330	132	33	150	Akangba B	132	33		60
Ayede	330	132	33	150	Akoka	132	11		45
Benin	330	132	33	150	Akoka	132	11		30
Benin	330		33	150	Akoka				30
		132				132	11		
Birnin-Kebbi	330	132	13.8	90	Akure	132	33		15
Egbin	330	132		150	Akure	132	33		30
Egbin	330	132		150	Akure	132	33		60
Gombe	330	132	33	150	Akwanga	132	33		40
Gombe	330	132	33	150	Alagbon	132	33		60
Ikeja West	330	132	33	150	Alagbon	132	33		60
Ikeja West	330	132	33	150	Alausa	132	33		45
Ikeja West	330	132	33	150	Alausa	132	33		60
Ikeja West	330	132	33	150	Alimosho	132	33		30
Jebba T.S.	330	132	13.8	60	Alimosho	132	33		60
Jos	330	132	33	150	Alimosho	132	33		30
Kaduna	330	132	13.8	60	Amuwo-Odofin	132	33		30
Kaduna	330	132	13.8	60	Amuwo-Odofin	132	33		30
Kaduna	330	132		90	Apapa-Road	132	33		45
Kaduna	330	132	33	150	Apapa-Road	132	33		45
Kano	330	132	33	150	Apapa-Road	132	33		15
Kano	330	132	33	150	Ashaka Cements	132	33		15
Katampe	330	132	33	150	Ashaka Cements	132	33		15
Katampe	330	132	33	150	Ashaka cenicits	132	33		30
New Haven	330	132	33	150	Awka Awka	132	33		30
New Haven	330	132	33	150		132	33		30
					Ayede				
Onitsha	330	132	13.8	90	Ayede	132	33		30
Onitsha	330	132	13.8	90	Ayede	132	33		60
Oshogbo B	330	132	33	150	Ayede	132	33		45
Oshogbo A	330	132	13.8	90	Bauchi	132	11		7.5
Oshogbo B	330	132	33	150	Bauchi	132	11		45
Shiroro	330	132	33	150	Bauchi	132	11		30
Shiroro	330	132	33	150	Benin	132	33		60
Aba	132	33		30	Benin	132	33		60
Aba	132	6.6		7.5	Benin	132	33		30
Aba	132	33		30	Bida	132	33		30
Aba	132	33		60	Bida	132	33		30
Aba	132	33		45	Birnin-Kebbi	132	33		5
Abakaliki	132	33		30	Birnin-Kebbi	132	33		15
Abakaliki	132	33		15	Birnin-Kebbi	132	33		30
Abeokuta	132	33		30	Biu	132	33		7.5
Abeokuta	132	33		30	Calabar	132	33		30
Abeokuta	132	33		30	Calabar	132	33		30

Table 71 – Transformateurs – Nigeria (1/3)

			TRA	NSFORMATEL	JRS - NIGERIA				
Sous-station	V1 (kV)	V2 (kV)	V3 (kV)		Sous-station	V1 (kV)	V2 (kV)	V3 (kV)	Sn (MVA)
Calabar	132	33	- 、 /	60	Isolo	132	11	- ()	15
Dakata	132	33		30	Isolo	132	11		15
Dakata	132	33		60	Isolo	132	11		15
Dakata	132	33		30	Itakpe	132	33		30
Damboa	132	33		30	Itakpe	132	33		30
Dan-Agundi	132	33		60	Itire	132	33		30
Dan Agundi Dan-Agundi	132	33		30	Itire	132	33		40
Dan-Agundi	132	33		60	Itu	132	33		15
Dan-Agunui Delta	132	33		30	Jebba T.S.	132	33		30
Delta	132	33		30	Jericho	132	33		30
									15
Effurun	132	33		30	Jericho	132	11		
Effurun	132	33		60	Jos	132	33		60
Effurun	132	33		60	Jos	132	33		60
Ejigbo	132	33		30	Kaduna	132	33		30
Ejigbo	132	33		30	Kaduna	132	33		60
Eket	132	33		45	Kaduna	132	33		30
Eket	132	33		45	Kaduna Town	132	11		15
Funtua	132	11		5	Kaduna Town	132	33		30
Funtua	132	11		7.5	Kaduna Town	132	33		30
Funtua	132	11		30	Kaduna Town	132	11		15
Gcm	132	33		15	Kaduna Town	132	33		60
Gombe	132	33		15	Kankia	132	33		75
Gombe	132	33		15	Kano	132	33		30
Gusau	132	33		15	Kano	132	33		40
Gusau	132	33		30	Kano	132	33		30
Gusau	132	11		7.5	Katampe	132	33		60
Gusau	132	11		7.5	Katampe	132	33		60
Hadejia	132	33		15	Katsina	132	33		7.5
Ibadan North	132	33		40	Katsina	132	33		30
Ibadan North	132	33		40	Katsina	132	33		30
Ife	132	33		30	Keffi	132	33		30
Ife	132	33		30	Kontagora	132	33		30
Ijebu-Ode	132	33		30	Kubwa	132	33		40
Ijebu-Ode	132	33		30	Maiduguri	132	33	11	45
Ijora	132	33		30	Maiduguri	132	33	11	45
Ijora	132	33		30	Maiduguri	132	11		15
Ijora	132	33		45	Makeri	132	33		15
Ijora	132	33		30	Makeri	132	33		15
Ikorodu	132	33		60	Makurdi	132	33		40
Ikorodu	132	33		60	Maryland	132	33		30
Ilesa	132	33		30	Maryland	132	33		40
Ilesa	132	33		30	Maryland	132	33		30
Ilorin	132	33		60	Minna	132	33		30
Ilorin	132	33		30	Minna	132	33		30
Ilupeju	132	11		15	New Haven	132	33		30
Ilupeju	132	11		25	New Haven	132	33		30
Ilupeju	132	11		15	New Haven	132	33		60
Ilupeju	132	11		30	Niamey	132	33		50
				30	•		22		20
Irrua	132	33			Nkalagu	132	33		30
Irrua	132	33		60	Nkalagu	132	33		30
Iseyin	132	33		45	Ofa	132	33		30
Isolo	132	33		30	Ogba	132	33		60
Isolo	132	11		15	Ogba	132	33		60
Isolo	132	33		30	Ogba	132	11		30

Table 72 – Transformateurs – Nigeria (2/3)

			TRA	NSFORMATE	URS - NIGERIA				
Sous-station	V1 (kV)	V2 (kV)	V3 (kV)	Sn (MVA)	Sous-station	V1 (kV)	V2 (kV)	V3 (kV)	Sn (MVA)
Ogba	132	33		25	Pankshin	132	33		15
Ogba	132	11		45	Papalanto	132	33		15
Oji River	132	66		15	Papalanto	132	33		15
Oji River	132	66		15	Papalanto	132	33		30
Ojo	132	33		30	Potiskum	132	33		30
Ojo	132	33		30	Potiskum	132	33		30
Okene	132	33		7.5	Sagamu	132	33		30
Okene	132	33		30	Sagamu	132	33		30
Omu-Aran	132	33		30	Sagamu Cements	132	33		15
Ondo	132	33		30	Sagamu Cements	132	33		15
Ondo	132	33		30	Savannah	132	33		15
Onitsha	132	33	11	45	Shiroro	132	33		30
Onitsha	132	11		15	Sokoto	132	33		30
Onitsha	132	33		60	Sokoto	132	33		30
Onitsha	132	33		15	Sokoto	132	33		30
Onitsha	132	33		60	Suleija	132	11		7.5
Oshogbo B	132	33		30	Suleija	132	11		7.5
Oshogbo B	132	33	11	45	Talata-Mafara	132	33		30
Oshogbo B	132	33		30	Tegina	132	33		30
Otta	132	33		45	Ukpilla	132	33		15
Otta	132	33		60	Ukpilla	132	33		7.5
Oturkpo	132	33		30	Uyo	132	33		40
Oturkpo	132	33		7.5	Uyo	132	33		40
Owerri	132	33		40	Yandev	132	33		15
Owerri	132	33	11	45	Yandev	132	33		15
Owerri	132	33	11	45	Yandev	132	33	11	45
Oworonshoki	132	33		30	Yelwa	132	33		30
Oworonshoki	132	33		30	Yola	132	33		30
P.H. Main	132	33	11	45	Yola	132	33		30
P.H. Main	132	33		60	Yola	132	11		15
P.H. Main	132	33	11	45	Zaria	132	11		15
P.H. Town	132	11		12.5	Zaria	132	11		15
P.H. Town	132	33		30	Zaria	132	33	11	45
P.H. Town	132	11		10	Zaria	132	33		40
P.H. Town	132	33		45					

Table 73 – Transformateurs – Nigeria (3/3)

	Cor	ndensateurs et	Selfs shui	nt - NIGERIA	-
Sous-station	Туре	Tension (kV)	Bancs	Capacité /banc (MVAr)	Capacité (MVAr)
Alaoji	ind.	330	-	-	75
Benin	ind.	330	-	-	75
Gombe	ind.	330	-	-	50
Gombe	ind.	330	-	-	50
Ikeja West	ind.	330	-	-	75
Jebba T.S.	ind.	330	-	-	75
Jebba T.S.	ind.	330	-	-	75
Kaduna	ind.	330	-	-	75
Kaduna	ind.	330	-	-	30
Kaduna	ind.	330	-	-	30
Kano	ind.	330	-	-	75
Katampe	ind.	330	-	-	75
Oshogbo	ind.	330	-	-	75
Ajaokuta	ind.	132	-	-	30
Alaoji	ind.	33	-	-	30
Benin	ind.	33	-	-	30
Gombe	ind.	33	-	-	30
Gombe	ind.	33	-	-	30

Table 74 – Shunts – Nigeria

4.2. Interconnexions existantes

Le tableau ci-dessous synthétise les interconnexions existantes en HT (> 100kV).

Ligne d'int	rerconnexion	Longeur [km]	Tension nom [kV]	Capacité [MVA]
de	à			
Interconn	exion OMVS	1200	225	250
Prestea (GHN)	Abobo (IC)	220	225	327
Akosombo (GHN)	Lome (TOG)	128.7	161	128
Akosombo (GHN)	Lome (TOG)	128.7	161	128
Ferkéssédougou (IC)	Kodeni (BF)	221.8	225	327
Dapaong (TOG)	Bawku (GHN)	65	161 (exploité en 34.5kV)	182
Nangbéto (TOG)	Bohicon (BEN)	80.3	161	120
Momé Hagou (TOG)	Avakpa (BEN)	54	161	105
Kara (TOG)	Djougou (BEN)	58	161	120
IKEJA WEST (NIG)	SAKETE (BEN)	75	330	686
BIRNIN-KEBBI (NIG)	NIAMEY (NIGER)	252	132	84.6
KATSINA (NIG)	GAZAOUA (NIGER)	72	132	84.6

Table 75 – Interconnexions existantes

4.2.1. Interconnexions Zone B

La seule interconnexion haute tension existante de la zone B est la ligne OMVS 225kV qui interconnecte le site hydroélectrique de Manantali au Sénégal, au Mali et à la Mauritanie. Cette ligne simple terne de 1200 kms dont 945 kms au Sénégal a une capacité maximale estimée à 150 MW mais en pratique le transit est limité à 110 MW.

La capacité de cette interconnexion devrait permettre d'évacuer la puissance additionnelle du nouveau projet hydroélectrique en cours de construction : Félou (60MW, mise en service prévue en 2013).

Dès la mise en service de site hydraulique de Gouina (projet candidat, mise en service estimée en 2017), il faudra éventuellement renforcer le réseau 225kV vers Dakar si nécessaire.

4.2.2. Interconnexions Zone A

Les pays suivants de la zone A fonctionnent de manière synchrone grâce à leur interconnexion en 330kV, 225kV et 161kV: Burkina Faso, Côte d'Ivoire, Ghana, Togo et Benin.

Le Nigéria et une partie du Bénin restent pour l'instant non synchrones même si les interconnexions existent.

4.2.2.1. PROJET « DORSALE 330KV »

Le projet consiste en un axe 330kV le long de la côte interconnectant la Côte d'Ivoire (Riviera), le Ghana (Aboadze et Volta), le Togo (Lomé C), le Bénin (Sakété) et le Nigéria (Ikeja West). Deux tronçons sont déjà mis en service :

- Le tronçon interne au Ghana de 215 kms, Aboadze Volta, qui a été récemment mis en service (2010);
- Un tronçon déjà opérationnel entre Sakété (Bénin) et le Nigéria (Ikeja West) qui est en service depuis 2007 et permet une importation importante du Togo/ Bénin (accord d'une importation de 150 MW depuis janvier 2011).

Notons que depuis la mise en service de ce dernier tronçon, le réseau du Togo/Bénin est exploité en 2 parties non synchrones : une synchrone avec le Ghana et une autre synchrone avec le Nigeria. Le point de séparation des 2 réseaux peut évoluer en fonction du niveau d'importation venant du Nigéria (base de 150 MW convenue depuis début 2011) et le Ghana. Les groupes de Nangbeto sont régulièrement partagés entre les 2 réseaux pour compenser la charge totale de CEB.

Ces 2 réseaux ne sont pas synchronisés suite à des problèmes de réglage de fréquence du côté du Nigéria où la fréquence en fonctionnement normale n'est pas maintenue dans une plage déterminée autour de 50Hz (typiquement 50 à 100 mHz). L' EEEAO prévoit de lancer une étude spécifique visant à proposer des solutions à ce problème d'exploitation d'ici fin 2011.

4.2.2.2. INTERCONNEXION 225KV

Une ligne 225kV mono-terne interconnecte la Côte d'Ivoire et le Burkina Faso depuis 2009. Elle relie les postes de Ferkéssédougou (IC) et Kodeni (BF).

Une ligne 225kV mono-terne interconnecte le Ghana et la Côte d'Ivoire entre les postes d'Abobo et Prestea (station intermédiaire à Elubo au Ghana).

4.2.2.3. INTERCONNEXIONS 161 KV

Le Ghana est interconnecté avec le Togo via les lignes 161kV simple terne suivantes :

- Ghana Togo : 2 lignes entre Lome et Akosombo d'environ 130 kms (dont une passant par le poste intermédiaire de Asiekpe et l'autre par le poste d'Aflao)
- Ghana Togo : une ligne 161kV interconnecte le Nord des 2 pays. Cette ligne exploitée en 34.5kV relie Bawku et Dapoang.

Le Bénin est interconnecté avec ses pays voisins avec les lignes 161kV simple terne suivantes :

- Une ligne interconnecte le Nord du Togo et du Bénin reliant Djougou et Kara
- Une ligne dans le Sud entre Mome Hagou (Togo) et Avakpa (Bénin)
- Une ligne part du poste de Nangbéto (Togo) vers le poste de Bohicon au Bénin.

4.2.2.4. INTERCONNEXIONS 132 KV

Le Niger et le Nigeria sont synchrones et interconnectés avec 2 lignes 132 kV :

- Une ligne de 250 kms connectant Birnin Kebbi (Nigeria) et Niamey (Niger) ;
- Une ligne de 70 kms reliant Katsina (Nigeria) à Gazaoua (Niger).

4.3. État des installations de transport

Une analyse de l'état du réseau électrique de l'Afrique de l'Ouest a été effectuée sur base de trois réseaux tests. Ces réseaux sont ceux du Sénégal, de la Côte d'Ivoire et du Togo Bénin. Ils ont été choisis car ce sont des réseaux importants et localisés dans des régions différentes de la zone de l'Afrique de l'Ouest. Cette étude prend également en compte la connaissance du consultant sur les réseaux du Ghana et du Nigéria.

4.3.1. Etat général du réseau THT

Les niveaux de tension concernés sont le 330kV et le 225kV.

De manière générale, le réseau très haute tension (THT) de l'Afrique de l'Ouest est récent, et de ce fait, il est en bon état.

Ce niveau de tension est assez peu chargé. Le simple terne est privilégié pour des raisons de coût. Des bouclages sont parfois mis en place.

Les plans de maintenance du réseau de transport THT sont en général bien établis et respectés. Il y a une gestion du stock des pièces de rechange. Le problème principal est le vol et le vandalisme sur le réseau. Les sociétés de transport de l'électricité tâchent d'y remédier en maintenant au mieux le réseau.

Globalement, les câbles très haute tension sont peu soumis à la pollution. Ce sont des câbles ACSR ou AAAC avec une température maximale d'exploitation de l'ordre de 70°C à 75°C. Les défauts sont rares et fugitifs la plupart du temps.

L'utilisation exceptionnelle de câbles ASTER 228mm² pour de la THT (225kV) doit être vu comme une erreur de conception car le diamètre est trop faible pour un tel niveau de tension.

Les isolateurs sont en verre trempé aérodynamique ou normal. L'état des armements est, en général, assez bon même si, localement, de l'usure a été détectée.

Enfin, étant donné que le réseau THT de l'Afrique de l'Ouest est très récent, peu de réhabilitations sont envisagées.

4.3.2. Etat général du réseau HT

Les niveaux de tension concernés sont le 161kV et le 90kV.

Certaines parties du réseau HT de l'Afrique de l'Ouest sont relativement anciennes et, dès lors, relativement vétustes. Ainsi, au Sénégal, 25% du réseau 90kV a plus de 30 ans.

Le réseau HT est globalement assez chargé mais n'est que très exceptionnellement surchargé. Ce genre de surcharges pourrait arriver à l'avenir avec l'accroissement de la charge urbaine. Ainsi, l'axe Akosombo-Lomé a par exemple connu une saturation durant l'année 2010 à cause de l'accroissement de la charge dans les villes Ghanéennes.

Le simple terne et le double terne se cotoient en HT. Le simple terne est régulièrement privilégié pour une question de coût mais en milieu urbain, le double terne n'est pas rare.

Figure 8 – Pylônes simple terne et double terne (zone Cap des Biches - Sénégal)

Selon les régions, les plans de maintenance sont organisés et suivis ou, au contraire, un peu plus délicats. La principale difficulté est la gestion du stock dans les pays où la construction du réseau s'est étalée sur de nombreuses années et où les technologies utilisées sont disparates.

Les réseaux HT sont relativement soumis à la pollution. Cette pollution est de trois types

- Marine dans les zones côtières ;
- Poussières dans les régions plus désertiques ;
- Industrielle et chimique très localement (à proximité des cimenteries par exemple).

Une des conséquences de cette pollution est une corrosion des pylônes.

Les câbles sont de type AAAC et ACSR. La température maximale d'exploitation se situe entre 65°C et 70°C. Les défauts sont pour la plupart fugitifs. Ils sont exceptionnellement permanents à cause de la pollution de l'environnement.

Les isolateurs sont en verre trempé aérodynamique ou normal. L'état des armements est, en général, assez bon même si, localement, de l'usure a été détectée.

Le poste de Cap des Biches au Sénégal est un bon exemple des problèmes rencontrés dans la région. On constate effectivement une pollution importante tant sur les chaînes d'isolateurs que sur les pylônes. On constate également une grande diversité dans les types de pylônes (simple terne, double terne, tubulaire, pylônes tête de chat, ...).

Figure 9 – Poste 90kV Cap des Biches (Sénégal)

De plus, une surisolation est réalisée dans les zones de pollution; surisolation constatée sur terrain au poste de Cap des Biches.

Figure 10 – Chaine 90 kV à Cap des Biches - 15 isolateurs en 161 kV (surisolé)

Enfin, certaines réhabilitations sont envisagées sur le niveau HT. Dans les lignes à réhabiliter il n'y a en général pas de problème de surcharge, mais une réhabilitation nécessaire suite à la vétusté de ces lignes situées pour la plupart en zone de forte pollution (marine ou poussières).

Figure 11 – Ligne Lomé-Cotonou - A réhabiliter

4.4. Projets nationaux

Cette section présente les lignes de transport qui seront développées à l'intérieur des pays. Ces projets sont propres aux pays et indépendants des projets EEEAO, OMVG et OMVS.

La table ci-dessous décrit ces lignes, leur date supposée de mise en service, leur tension d'exploitation, leur longueur et leur capacité thermique.

En l'absence de données, des paramètres standards basés sur des lignes similaires existantes ont été utilisés.

Pays	Année de mise en service pressentie	Tension (kV)	de	à	Longueur	Capacité Thermique
Burkina Faso	N/A	225	Ouagadougou	Tambao	250	327
	N/A	225	Brikama	Willengara	15	327
Gambia	N/A	225	Willengara	Kotu	15	327
	N/A	225	Willengara	Brufut	15	327
	2013	330	Prestea	Kumasi	173	1000
	2015	330	Kumasi	Kintampo	180	1000
	2015	330	Domini	Prestea	91	1000
Ghana	2015	330	Kintampo	Bolgatanga	287	1000
	2016	330	Aboadze	Domini	120	1000
	2019	330	Prestea	Kumasi	173	1000
	2016	330	Domini	Prestea	91	1000
Ivory Coast	2012	225	Laboa	Ferke	285	327
, Mali	2017	150	Koutiala	Mopti	100	N/A
Nimou	N/A	132	Zinder	Diffa	410	84.6
Niger	N/A	132	Zinder	Tchirozerine	486	84.6
	N/A	330	Makurdi	Jos	286	777
	N/A	330	New Haven	Makurdi	245	777
	N/A	330	New Haven	Ekpene	249	777
Nicaria	N/A	330	New Haven	Ekpene	249	777
Nigeria	N/A	330	Ekpene	Afam	150	777
Togo/Benin	N/A	330	Omoku	Onitsha	195	777
	N/A	330	Abasi	Ekpene	78	777
	N/A	330	Ajaokuta	Lokoja	250	777
	2013	161	Onigbolo	Parakou	250	120
	2016	161	Bembereke	Guene	180	120
	2016	161	Guene	Malanville	40	120
	2016	161	Guene	Dydyonga	100	120
	2016	161	Kara	Dapaong	200	120

Table 76 – Futures lignes de transport à l'intérieur des pays

4.5. Prix unitaires des équipements

Les prix unitaires proposés pour calculer le coût des équipements de transport sont repris ci-après à la table ci-après. Ces prix résultent de l'expérience du Consultant dans différentes études de développement et en particulier en Afrique. Ces prix unitaires ont été synthétisés de manière à assurer la cohérence entre les différents plans de tension et les différentes capacités des ouvrages de transport et de transformation.

			Assessed
	Equipment description		price
			MUSD
330/225 kV	transformer 500 MVA		8.400
330/161 kV	transformer 500 MVA		7.980
330/161 kV	transformer 200 MVA		4.609
330/132 kV	transformer 90 MVA		2.720
330/132 kV	transformer 150 MVA		3.605
330/132 kV	transformer 300 MVA		5.500
330 kV	GIS bay		2.500
330 kV	AIS conventional bay		1.500
330 kV	opening site/general services		4.500
330 kV	OHL 1c/1 500 MVA		0.197
330 kV	OHL 1c/2 500 MVA		0.247
330 kV	OHL 2c/2 2x500 MVA		0.296
330 kV	OHL 2d 500 MVA		0.064
330 kV	OHL 1c/1 1750A 1000 MVA bundle of 2	per km	0.216
330 kV	OHL 1c/2 1750A 1000 MVA bundle of 2	per km	0.270
330 kV	OHL 2c/2 1750A 2x1000 MVA bundle of 2	per km	0.360
330 kV	OHL 2d 1750A 1000 MVA bundle of 2	per km	0.090
330 kV	coupling 330 kV GIS		2.500
330 kV	coupling 330 kV AIS		1.500
225/161 kV	transformer 500 MVA		7.182
225/161 kV	transformer 200 MVA		4.148
225/69 kV	transformer 125 MVA		2.250
225/69 kV	transformer 175 MVA		2.800
225/11 kV	transformer 100 MVA		2.000
225/11 kV	transformer 40 MVA		1.150
225 kV	GIS bay		1.000
225 kV	AIS conventional bay		0.590
225 kV	coupling 220 kV GIS		1.000
225 kV	coupling 220 kV AIS		0.590
225 kV	opening site/general services		4.000
225 kV	OHL 1c/1 839A 327 MVA 604 mm2	per km	0.181
225 kV	OHL 1c/2 839A 327 MVA	per km	0.226
225 kV	OHL 2c/2 839A 2x327MVA	per km	0.271
225 kV	OHL 2d 839A 327 MVA	per km	0.059
225 kV	OHL 1c/1 460 MVA		0.190
225 kV	OHL 1c/2 460 MVA	per km	0.238
225 kV	OHL 2c/2 2x460 MVA	per km	0.285
225 kV	OHL 2d 460 MVA	per km	0.062
225 kV	underground câble 1200 cu 417 MVA (1)	per km	2.273

Table 77 – Coûts unitaires proposés pour les ouvrages de transport et de transformation (1/2)

			Assessed
	Equipment description		price
			MUSD
161 kV	GIS bay		0.900
161 kV	AIS bay		0.531
161 kV	GIS coupling		0.900
161 kV	AIS coupling		0.531
161 kV	opening site/general services		3.600
161 kV	OHL 1c/1 364 MVA	per km	0.181
161 kV	OHL 1c/2 364 MVA		0.226
161 kV	OHL 2c/2 2x364MVA		0.271
161 kV	OHL 2d 364 MVA		0.059
161 kV	OHL 1c/1 182 MVA 265 mm2		0.128
161 kV	OHL 1c/2 182 MVA 265 mm2		0.160
161 kV	OHL 2c/2 182 MVA 2x265 mm2		0.192
161 kV	OHL 2d 182 MVA 265 mm2		0.042
132 kV	GIS bay		0.855
132 kV	AIS conventional bay		0.504
132 kV	opening site/general services		3.600
132 kV	OHL 1c/1 Panther 250MVA 2*250mm2	per km	0.150
132 kV	OHL 1c/2 Panther 250MVA 2*250mm2	per km	0.173
132 kV	OHL 2c/2 Panther 250MVA 2*250mm2	per km	0.231
132 kV	OHL 2d Panther 250MVA 2*250mm2	per km	0.052
	capacitor shunt	per Mvar	0.007
	Reactor shunt		0.030
	SVC (static Var compensator)	per Mvar per Mvar	0.072

Table 78 – Coûts unitaires proposés pour les ouvrages de transport et de transformation (2/2)

5. ASPECTS FINANCIERS, LÉGAUX ET INSTITUTIONNELS

5.1. Objectifs poursuivis

Les objectifs poursuivis concernant les aspects financiers, légaux et institutionnels sont :

- la collecte des données relatives aux aspects légaux, financiers et institutionnels;
- l'évaluation économique et financière des projets du programme d'investissement prioritaire dans le but de quantifier leurs avantages pour l'EEEOA et leur viabilité financière pour les sociétés d'électricité;
- la formulation de stratégies d'implémentation accélérée des projets prioritaires.

5.2. Domaine d'intervention

Le domaine d'intervention consiste à :

Récolter pour chaque pays membre de l'EEEOA des données relatives :

- aux intervenants institutionnels (public/privé, gouvernance, entreprises de production/transport/distribution d'électricité, etc.);
- à la santé financière et aux performances des sociétés d'électricité (adéquation des tarifs, recouvrement, etc.);
- aux cadres juridique et institutionnel, à la structure de gouvernance et aux réformes dans le secteur de l'électricité ;

Soumettre des stratégies régionales d'implémentation des projets prioritaires de l'EEEOA et, si nécessaire, faciliter la mobilisation de fonds provenant d'institutions multilatérales ou bilatérales à travers des partenariats public-privé, et attirer des investisseurs privés avec des conditions de financement optimales. Ceci devrait s'inscrire dans le cadre des lois additionnelles adoptées par les chefs d'État et de Gouvernement de la CEDEAO, ainsi que des diverses décisions et résolutions prises par l'Assemblée générale de l'EEEOA concernant l'implémentation du plan d'urgence pour la sécurité de l'approvisionnement en électricité et les projets de lignes de transport. Une attention particulière sera également accordée à la propriété et à l'exploitation d'infrastructures de production et de transport d'électricité, avec un accent placé sur la situation institutionnelle et financière des sociétés d'électricité nationales.

5.3. Approche suivie

Le premier volet de la mission consiste :

- à se rendre sur le terrain dans les pays membres sélectionnés pour récolter des données et de débattre avec les actionnaires et les décideurs régionaux adéquats ;
- à identifier les indicateurs de réussite utilisés par les investisseurs potentiels dans leur évaluation de la viabilité financière des investissements dans le secteur de l'énergie (stabilité à long terme, liquidités à court terme, capacité du service de la dette, etc.);
- à analyser les performances financières des sociétés d'électricité tout au long de la conduite des projets prioritaires afin d'évaluer le niveau des indicateurs de réussite :
- à formuler des recommandations adéquates.

Le second volet de la mission consiste :

- à se rendre sur le terrain dans des pays sélectionnés qui ont mené à bien par le passé des projets de transport transfrontalier et de production régionale, et ce afin d'étudier les approches d'implémentation adoptées pour les projets régionaux et leur efficacité;
- à passer en revue les différentes décisions prises et les lois additionnelles adoptées par l'EEEOA et la CEDEAO en matière de développement et d'implémentation de projets afin de cerner les différences entre anciennes et nouvelles approches;
- à déterminer comment la nouvelle approche peut aplanir les difficultés et permettre au sein de l'EEEOA d'attirer les investissements et à accélérer l'implémentation de projets ;
- à évaluer si la législation et la gouvernance dans les différents pays pourraient avoir un impact sur l'adoption de cette nouvelle approche ;
- à formuler des recommandations adéquates.

5.4. Résumé des données récoltées à ce stade

5.4.1. Anciennes données financières

Pour chaque pays, les données récoltées sont résumées comme suit :

٠	π
	S
	200
	۲
	₹
	annu
	ā
	۳
	ŧ
	ž
	:
	₫
	ĕ
	≧
	Ė
	Ξ
	2
3	È
	3
	č
	۳
٠	č
	₹
•	torbidden
,	ç
	.,
٠	×
	DAIT FO
	₫
٠	t
	π
	\Box
٠	Ċ.
	2
	2
	두
	9
	ĸ
	Smission
	9
	۲
	ב
	Ľ
	5
	ç
	_
	7
1	Ē
	ŗ
	⋍
	c
	2
	Ans
•	۹
	◁
ľ	5
(
	₽
	ř
	ř
	FUGINA
	Ē
	ĕ
ı	Ì
	٥
٠	
	ř
	۲
	לת
ŀ	
4	t
	9
	2
	2
	۳
	Č
	2
	2
	α
	4
	<u>v</u>
	÷
	ç
	ч
	c
	2
	=
	TOCI IMPUT

Pays membre de l'EEEOA	Type d'informations récoltées	
Sénégal	 Rapports annuels et financiers 2007-2009 de la Senelec (Société Nationale d'Électricité) Structure tarifaire 2009-2010 	
Gambie	 Rapport annuel 2009 de la NAWEC (National Water and Electricity Company) Évolution tarifaire 	
Guinée-Bissau	Grille tarifaire 2004-2010 Rapports financiers d'EAGB	
Guinée	 Rapports financiers 2007-2009 de la EDG (Électricité de Guinée) Rapport d'étude tarifaire 2009 Tarifs approuvés pour 2010 	
Sierra Leone	Absence d'états financiers de la NPA (National Power Authority)	
Libéria	 Structure tarifaire Bilan 2010 (uniquement) de la LEC (Liberia Electricity Corporation) 	
Mali	 Absence d'états financiers Rapport d'étude tarifaire et annexes 2008 Accord tarifaire du projet de Manantali 	
Côte d'Ivoire	Absence d'états financiers de la CIE (Compagnie ivoirienne d'électricité)	
Ghana	 Rapports annuels et financiers de la VRA (Volta River Authority) pour la période 2007-2010 Ghana Grid Company (Corporate Budget) ECG (Electric Company of Ghana - 2004-2009) 	
Togo-Bénin	 Rapports annuels et financiers 2009 de la CEB (Communauté Électrique du Bénin) Rapport annuel 2009 de la SBEE (Société béninoise d'Énergie électrique) 	
Burkina Faso	 Rapport d'étude tarifaire 2005 et modèle financier Rapports annuels et financiers 2005-2008 de la Sonabel (Société nationale d'Électricité du Burkina) 	
Niger	 Rapports financiers 2008-2009 de la Nigelec (Société nigérienne d'électricité) Structure tarifaire 2010 	
Nigéria	 Absence d'états financiers des sociétés d'électricité Grille tarifaire 2011 	

This document is the property of Tractebel Engineering S.A. Any duplication or transmission to third parties is forbidden without prior written approval

5.4.2. Institutions du secteur de l'électricité, gouvernance et cadre légal

Pays membre de l'EEEOA	Type d'informations récoltées
Sénégal	 Réglementation sénégalaise du secteur de l'électricité - 1998 Rapport national de politique économique 2007 Rapport 2007 relatif à la dette publique Stratégie d'électrification en milieu rural
Gambie	 Rapport annuel 2009 de la NAWEC (National Water and Electricity Company) Rapport sur la réforme et les investissements - 10/2010 Rapport de faisabilité - COTECO (consortium) Résumé du coût des barrages (hydroélectriques)
Guinée	Absence d'informations relatives au cadre juridique, institutionnel et technique
Guinée-Bissau	Absence d'informations relatives au cadre juridique, institutionnel et technique
Sierra Leone	Absence d'informations relatives au cadre juridique, institutionnel et technique
Libéria	 Politique nationale de l'Énergie 2009 Livre blanc (relatif au secteur énergétique national) concernant la réforme du secteur de l'électricité et la coopération régionale - 2007
Mali	 Rapport annuel 2009 d'Énergie du Mali Données relatives au coût des lignes de transport Article technique relatif à l'OMVS Felou HEP Rapport d'étude sur les relations Mali-Côte d'Ivoire et ses annexes Rapport annuel 2009 de la SOGEM (Société de Gestion de l'Énergie de Manantali)
Ghana	 Résumé relatif au cadre juridique, institutionnel et technique Loi 541 Perspectives 2010 en matière d'énergie
Côte d'Ivoire	Absence d'informations relatives au cadre juridique, institutionnel et technique
Togo-Bénin	 Rapport sur le financement de l'électrification en milieu rural, 10/2005 Rapport annuel 2009 de la CBE Code de l'Électricité de la CEB, 03/2007 Plan de développement stratégique du Bénin, 2003 et 09/2008 Rapport annuel 2009 de la SBEE
Burkina Faso	 Décrets 279 et 280 relatifs à l'électricité – 2007 et 2008 Livre blanc relatif aux projets dans le cadre des objectifs du millénaire pour le développement Projet MEPRED (Mainstreaming Energy for Poverty Reduction and Economic Development) - 2008 Rapports annuels 2005-2008 de la Sonabel

Nigéria	Directives de procédure pour l'EIA
	Politique environnementale nationale
	Directives EIA pour l'infrastructure - 2005
	Rapport sur l'amélioration de la fiabilité du réseau électrique
	Feuille de route pour la réforme du secteur de l'électricité
Niger	Code 2003 de l'énergie électrique
	Réglementation 1999
	Politique du ministère des Mines et de l'Énergie, juillet 2004
	Rapport 2007 sur le système d'information énergétique (SIE Niger)

5.4.3. Lois additionnelles et résolutions de l'EEEOA

Contexte de ces lois:

Le secrétariat de l'EEEOA a coordonné la préparation et l'adoption d'un plan directeur visant la mise en place de l'infrastructure initiale de production et de transport nécessaire afin de créer le système d'échanges d'énergie électrique décidé en 2005.

Toutefois, des retards importants se sont accumulés dans l'exécution de ces projets. Les vastes pénuries en énergie perdurent ainsi dans la sous-région. Pour trouver une solution à ces problèmes de pénuries, le secrétariat de l'EEEOA a dû commander en 2006 l'étude d'un plan d'urgence pour la sécurité de l'approvisionnement électrique. Les résultats de cette étude ainsi que d'autres propositions visant à accélérer l'implémentation des projets prioritaires de l'EEEOA ont été débattus lors du 33° sommet des chefs d'État et de Gouvernement de la CEDEAO, qui s'est tenu à Ouagadougou en janvier 2008. Ont été ratifiées et adoptées à cette occasion les Lois additionnelles A/SA.3/01/08 et A/SA.4/01/08 instaurant la stratégie de implémentation du système d'échanges d'énergie électrique ouest-africain, ainsi que les recommandations de l'étude pour un plan d'urgence pour la sécurité de l'approvisionnement en électricité.

Les deux Lois additionnelles exigent que les projets électriques régionaux de l'EEEOA soient mis en œuvre selon le modèle deSociété à But Unique (*specific purpose company* ou SPC). En termes d'approche, l'implémentation d'un projet implique la création d'une entité régionale distincte dans le cadre d'un partenariat public-privé. Cette entité possédera et gérera tous les actifs nécessaires au projet régional. Cette même approche a été utilisée lors de la mise en œuvre du projet hydroélectrique de Manantali par l'OMVS-SOGEM, bénéficiant au Mali, au Sénégal et à la Mauritanie.

5.4.4. Autres documents

Mentionnons trois autres documents pertinents à notre disposition : le rapport final d'étude du plan d'urgence pour la sécurité de l'approvisionnement en électricité du bureau Arthur Energy Advisors, un article intitulé "Understanding the Regional Environment; Challenges of the WAPP SPC" ainsi que le rapport "The Diagnostic Report on Institutional and regulatory Frameworks of ECOWAS Member Countries".

5.5. Méthodologie d'évaluation économique et financière et de la formulation d'une stratégie d'implementation

5.5.1. Evaluation économique et financière

5.5.1.1. OBJECTIF DE L'ÉVALUATION ÉCONOMIQUE ET FINANCIÈRE

Comme indiqué dans le chapitre qui décrit la méthodologie générale de l'étude les études économique et technique permettront d'élaborer un programme d'investissements prioritaires en production et en transport.. Ces analyses fourniront un programme prévisionnel relatif à l'offre et la demande de charge, les coûts d'investissements liés à la production et au transport de l'électricité ainsi que ceux liés à l'exploitation et à la maintenance des infrastructures de production et de transport. L'objectif principal de l'évaluation économique et financière est de garantir que les projets prioritaires retenus génèrent des avantages économiques à la fois aux pays importateurs et aux pays exportateurs d'énergie, des avantages financiers aux sociétés d'électricité et/ou aux entreprises de type SPC. Cette évaluation reposera sur les principes de valeur actuelle nette (VAN), de taux de rentabilité interne économique (TRIE) et de taux de rentabilité interne financier (TRIF). Par ailleurs, la viabilité financière des sociétés d'électricité et/ou des sociétés de type SPC peut aussi être évaluée en regard du taux de rentabilité des immobilisations nettes moyennes, du ratio du fonds de roulement afin d'évaluer ses liquidités et du coefficient du service de la dette afin de jauger sa capacité à rembourser au moment opportun le principal venant à échéance et l'intérêt.

Deux feuilles de calcul Excel ont été conçues pour évaluer :

- la viabilité économique et financière des projets prioritaires et des avantages qu'ils génèrent pour les pays et les sociétés d'électricité;
- des performances financières des sociétés d'électricité prenant part à l'implémentation de ces projets prioritaires.

5.5.1.2. MODÈLE D'ÉVALUATION D'UN PROJET

Le modèle d'évaluation de la viabilité économique et financière des projets prioritaires et des avantages qu'ils génèrent pour les pays et sociétés d'électricité se compose des trois modules suivants :

- Offre et demande d'énergie
- Charges de capital et d'exploitation liées à la production et au transport de l'énergie
- Tarifs, chiffre d'affaires et avantages divers

Offre et demande d'énergie

Ce premier module exploite les travaux réalisés par les études économiques et techniques afin de quantifier l'offre et la demande d'énergie dans les différents pays.

Coûts liés à la production et au transport de l'énergie

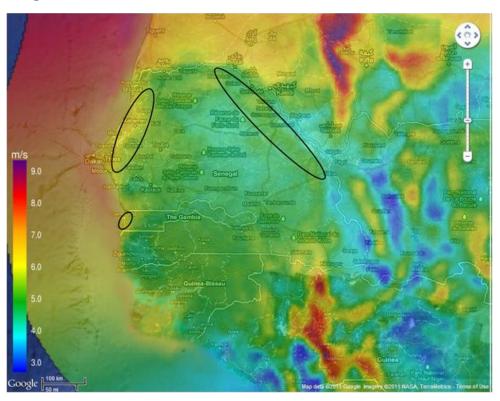
Ce deuxième module exploite aussi les travaux réalisés par les études économique et technique pour déterminer les coûts d'investissement dans la production et le transport de l'énergie, les coûts d'exploitation, de maintenance, de gestion et d'administration ainsi que le coût de l'énergie perdue en transport. Il fournit également le capital total nécessaire à l'implémentation de chaque projet ainsi qu'un plan financier, reprenant les capitaux d'emprunt et les capitaux propres nécessaires au financement de chaque projet. Les crédits attendus par le projet et les remboursements à effectuer sont arrêtés et pris en considération pour l'exercice au cours duquel ils sont escomptés.

Avantages

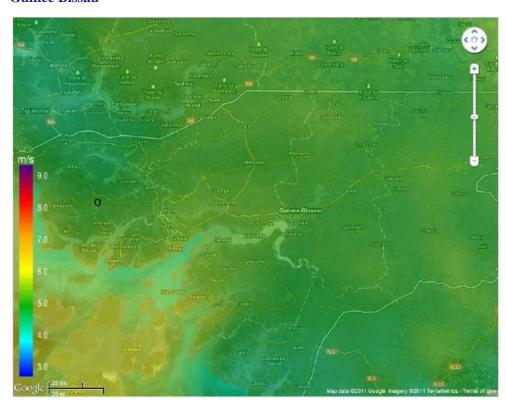
Ce module calcule les retombées de chaque projet en termes de recettes provenant de la vente d'énergie produite et/ou transportée dans le cadre dudit projet ainsi que tout autre avantage direct ou indirect en découlant. De même, il calcule les gains nets pour chaque exercice au cours de la période de planification, en tant que différence entre les coûts encourus au cours de l'exercice en question et les gains, différence utilisée afin de déterminer la VAN, le TRIE et le TRIF dans le but de cerner la viabilité du projet.

Cas de figure, éléments sensibles et scénarios à prendre en considération

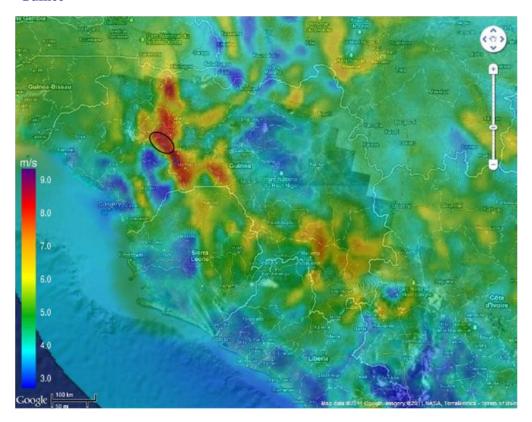
L'évaluation serait réalisée sur la base d'hypothèses portant sur divers paramètres/inputs pertinents pour le projet. Ces hypothèses ont trait à l'avenir et leur caractère certain ne peut donc pas être garanti. Nous sommes conscients que la valeur réelle de ces variables pourrait différer de celle utilisée comme hypothèse sous-jacente. Le présent chapitre étudie l'impact sur la viabilité du projet de tout écart entre la valeur exacte d'un paramètre et l'hypothèse utilisée. Pour les personnes chargées de l'implémentation du projet, il constitue une référence leur permettant d'intégrer une série d'éventualités en termes de gestion. L'analyse des incertitudes peut éventuellement porter sur les aspects et facteurs suivants :

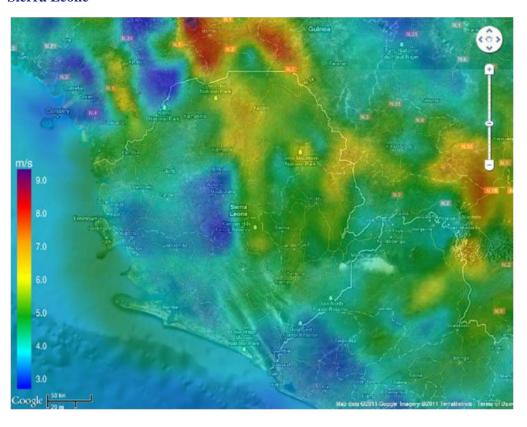

- Coût du projet
- Prévision de la demande en énergie
- Retards possibles dans la mise en œuvre du projet
- Politique nationale de sécurité énergétique
- Coût de l'approvisionnement en énergie (tout particulièrement en combustibles)
- Taux d'actualisation
- Tarifs de l'électricité

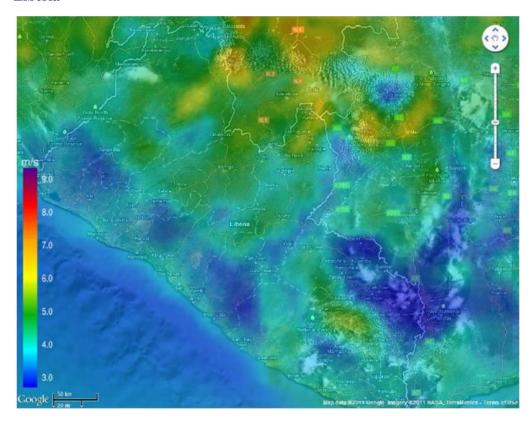
5.5.1.3. MODÈLE D'ÉVALUATION DES PERFORMANCES FINANCIÈRES DES SOCIÉTÉS D'ÉLECTRICITÉ

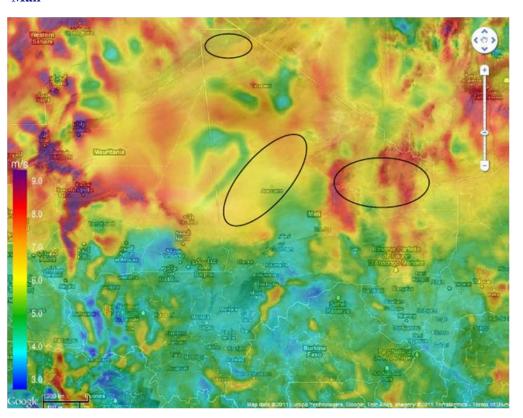

Le modèle d'évaluation des performances financières des sociétés d'électricité participant à l'implémentation des projets prioritaires est conçu afin de réaliser une prévision des états financiers habituels comprenant les résultats, les flux de trésorerie et le bilan. De même, il détermine les indicateurs de performances financières qui sont utilisés pour l'évaluation de la viabilité financière des entités participant à l'implémentation des projets prioritaires.

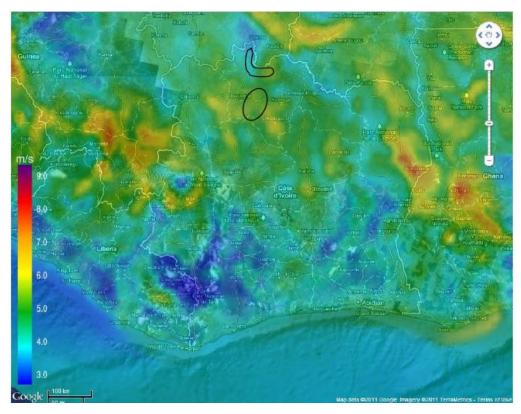
6. ANNEXE – ZONES À FORT POTENTIEL ÉOLIEN PAR PAYS

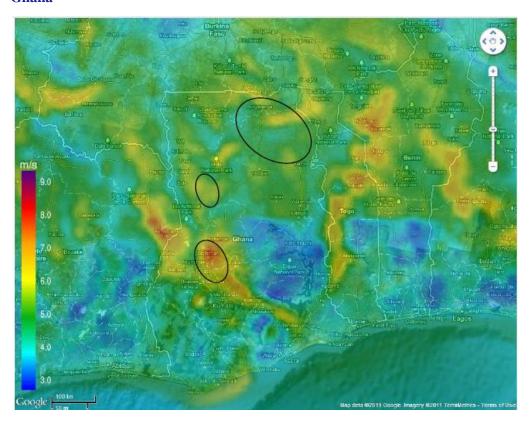

Sénégal et Gambie

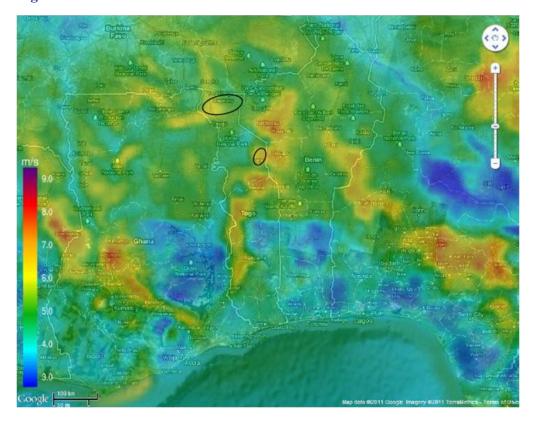

Guinée Bissau

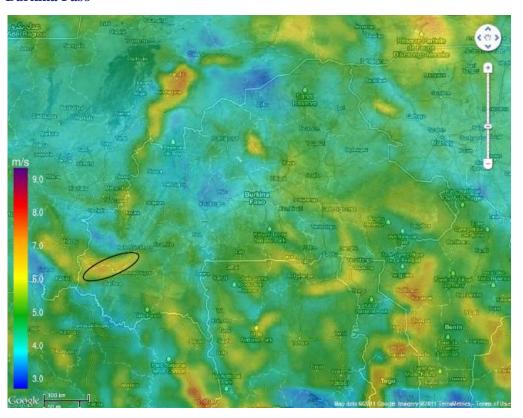

Guinée

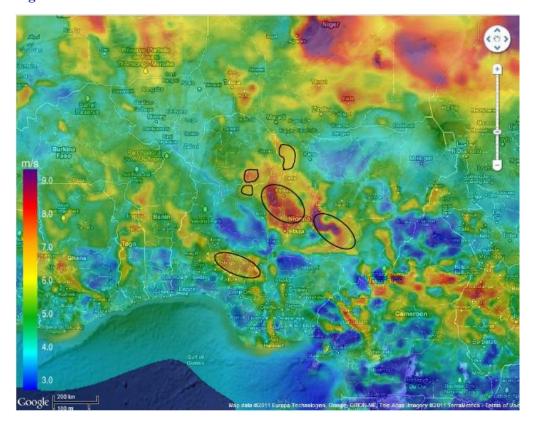

Sierra Leone

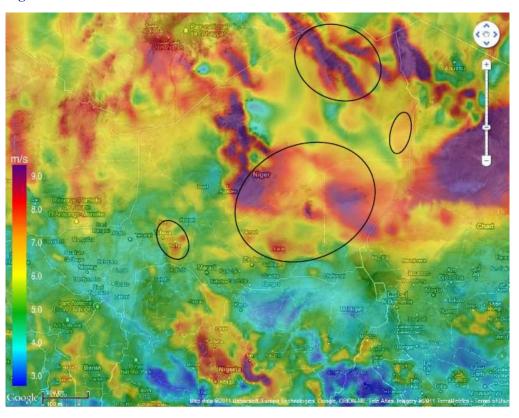

Libéria


Mali


Côte d'Ivoire


Ghana


Togo et Benin


Burkina Faso

Nigéria

Niger

7. ANNEXE: SIMULATIONS "THERMOFLOW" GAZ ET CHARBON

TRA	CTEBEL Engineering			WAPP Simulation Production Hypothèses et Commentaires			
	Date d	le la demière révision	01/04/2011	Trypotrieses et commentaires			
	Mot Clé	Cas thermoflow	Sujet	Commentaire			
1	Température	general	Température ambiante	33°C			
2	HR	general	Humidité Relative	70%			
3	Fréquence	general	Réseau Electrique	50 Hz			
4	Température eau de mer	general	Température eau de mer	25°C Différence de température entre SW intérieur et extérieur: SWext-SWint = 7°C			
5	Coût	general	Coûts régionaux considérés	Afrique du Sud - aucun autre pays africain disponible dans la libraire Thermoflow			
6	Intérieur/Extérieur	general	Configuration du site	TG + TV à l'intérieur - Chaudière de récupération à l'extérieur, de même que les auxiliaires			
7	Niveau de pressurisation	general (sauf 5-6)	Configuration du cycle	3 niveaux de pressions - réchauffage			
8	Combustible	general	Combustible	Gaz naturel avec une pression suffisante (pas de compresseur de gaz additionnel)			
9	Combustible	general	Combustible	Système bi-combustible inclus - Cas de base: Gaz naturel et non Diesel			
10	Combustible	general	Combustible	Distillat = sélection standard de Thermoflow - pas d'alternative possible			
11	CAPEX	general	philosophie des CAPEX	Basé sur un calcul au moindre coût et non sur une optimisation de l'efficacité qui mènerait à des investissements plus élevés (notamment dans le nombre d'aéro-condenseurs)			
12	Chaudière de récupération	tous	Performances	Point de pincement à 10-15-15 pour la BP-MP-HP respectivement			
13	Chaudière de récupération	tous	Disponibilité	Système de contournement			
14	Condenseur TV	tous	Eau de refroidissement	Eau de mer			
15	Options CAPEX	tous	Pièces de rechange	2% des coûts totaux du projet			
16	TG Alstom	1-2		Dans le cas de la TG Alstom, puissance nette générée = 319 MW Remarque: chambres de combustion de type silo (grande flexibilité de combustibles)			
17	Turbine à gaz	1-2	Principales caractéristiques de la turbine sélectionnée	- Peu de NOX (brûleur à faible dégagement de Nox alimenté par voie sèche)			

TRA	CTEBEL Engineering			WAPP Simulation Production Hypothèses et Commentaires			
	Date d	e la dernière révision	01/04/2011	Trypotrieses et commentantes			
	Mot Clé	Cas thermoflow	Sujet	Commentaire			
18	Condenseur refroidi à l'air	1-3-5	Condenseur refroidi à l'air	La solution a les avantages et inconvénients suivants: - Pas de consommation d'eau (en particulier lorsque le site se situe loin de sources) - Plus grande consommation électrique - Plus grande empreinte - Plus de CAPEX - Efficacité plus faible Solutions améliorées (Tours de refroidissement, systèmes hybrides, systèmes Heller) pourraient être utilisées mis cela dépend du site et des spécifications			
19	Condenseur refroidi à l'air	1-3-5	Points de conception	Pression de condensation fixée à 200mbar suivant les conditions du site			
20	Niveau de pressurisation chaudière de récupération	5-6	Configuration du cycle	2 niveaux de pression mais seule la HP est conectée à la TV - BP directement acheminée vers le dégazeur température de la vapeur HP limitée à 520°C			
21	Type de TG	5-6	Sélection de la TG	TG dérivées de l'aéronautique non sélectionnées car plus grande complexité technique pour peu de puissance générée. Les GT sélectionnées sont limitées à l'utilisation de Gaz naturel ou distillats comme combustibles			
22	Type de TG	3-4	Sélection de la TG	Des TG 7FA avec une capacité brute de 171MW et des émissions de NOx de 9PPM pourraient également convenir			
23	Brûleur charbon	10	Définition du LFC (voir figure 2)	La technologie LFC peut s'expliquer en deux étapes. Dans un lit fluidisé, le charbon est brûlé dans une suspension auto mélangée de gaz et de matériaux solides (calcaire) dans lequel l'air pénètre par le bas. Dans un lit fluidisé circulant, les matériaux solides capturés comprenant le charbon non consumé sont réinjectés directement dans la chambre de combustion. La circulation interne des LFC permet un plus long séjour du charbon et du calcaire dans la chambre de combustion, ce qui permet une meilleure combustion et une meilleure capture des sulfures.			
24	Brûleur charbon	11	Définition du CP (voir figure 1)	La technologie de charbon pulvérisé va d'abord utiliser des broyeurs à charbons qui vont sécher, broyer et pulvériser (< 80µm) le charbon. Ce charbon pulvérisé est directement injecté avec l'air primaire dans les brûleurs à différents niveaux de la chaudière.			

TRACTEBEL Engineering GDF SUCZ Date de la dernière révision 01/04/2011				WAPP Simulation Production Hypothèses et Commentaires
Мо	ot Clé	Cas thermoflow	01/04/2011 Sujet	Commentaire

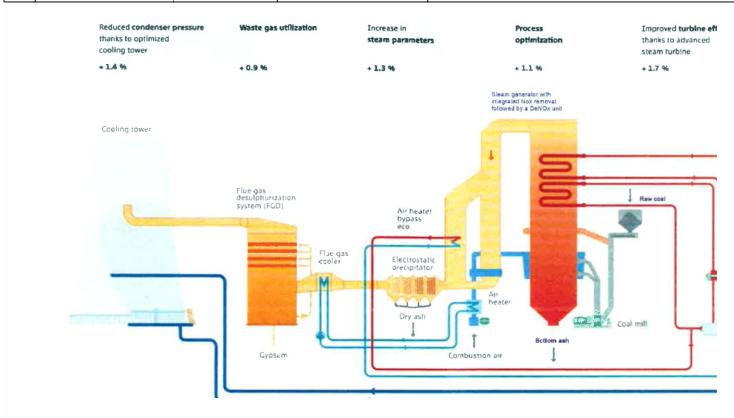


Figure 1 - Technologie à charbon pulvérisé

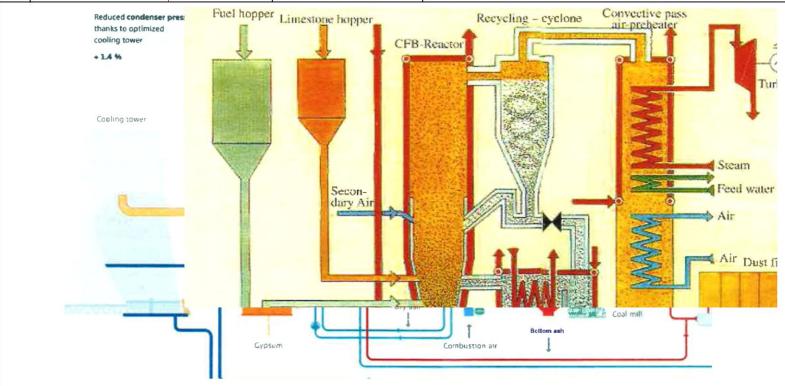


Figure 2 - Technologie à lits fuidisés circulants

- 8. ANNEXE: ETUDE DE STABILITE: MODELE PSA POUR L'ANNEE 2025, POINTE DE CHARGE
- 8.1. Noeuds

Sous-station	Pays	Zone	Tension	Sous-station	Pays	Zone	Tension
Nom			kV	Nom			kV
TOBENE03	SE	SE	225	SENDOU3G	SE	SE	6.6
KAOLAC03	SE	SE	225	MAURIT03	MT	MT	225
TOUBA 03	SE	SE	225	SOMA 03	GA	GA	225
KAHO1_03	SE	SE	225	BRIKAM03	GA	GA	225
KAHO2_03	SE	SE	225	BRIKAM1G	GA	GA	30
DAGANA03	SE	SE	225	MANSOA03	GB	GB	225
MATAM 03	SE	SE	225	BISSAU03	GB	GB	225
SAKAL 03	SE	SE	225	BAMBAD03	GB	GB	225
TAMBAC03	SE	SE	225	SALTHI03	GB	GB	225
TANAF 03	SE	SE	225	BISSAU1G	GB	GB	30
KOUNOU03	SE	SE	225	LINSAN03	GU	GU	225
ZIGUIN03	SE	SE	225	NZEREK03	GU	GU	225
SENDOU03	SE	SE	225	FOMI 03	GU	GU	225
MBOUR 03	SE	SE	225	BOKE 03	GU	GU	225
THIONA08	SE	SE	90	KALETA03	GU	GU	225
TOBENE08	SE	SE	90	LABE 03	GU	GU	225
	SE	SE	90	MALI 03	GU	GU	225
HANN_08							
BELAIR08	SE	SE	90	SAMBAG03	GU	GU	225
CAPEBIO8	SE	SE	90	BEYLA_03	GU	GU	225
KOUNOU08	SE	SE	90	KANKAN03	GU	GU	225
MBAO08	SE	SE	90	KOROUS03	GU	GU	225
SOCOCI08	SE	SE	90	DABOLA03	GU	GU	225
GTIIPP08	SE	SE	90	SIGUIR03	GU	GU	225
MECKHE08	SE	SE	90	AMARYA03	GU	GU	225
MATAM_08	SE	SE	90	MATOTO03	GU	GU	225
SIBA08	SE	SE	90	KOUKOU03	GU	GU	225
SOMETA08	SE	SE	90	BOUREY03	GU	GU	225
FICT1_08	SE	SE	90	DONKEA07	GU	GU	110
FICT2_08	SE	SE	90	GARAFI07	GU	GU	110
UNIVER08	SE	SE	90	GRCHUT07	GU	GU	110
AEROPO08	SE	SE	90	MATOTO07	GU	GU	110
PATTED08	SE	SE	90	LINSAN07	GU	GU	110
TAIBA_08	SE	SE	90	MAMOU_07	GU	GU	110
SAKAL_10	SE	SE	30	KINDIA07	GU	GU	110
KAHONE1G	SE	SE	15	GRCHUT_D	GU	GU	60
KAHONE2G	SE	SE	15	MATOTO_D	GU	GU	60
BELAIR11	SE	SE	15	MANEAH_D	GU	GU	60
KOUNOU11	SE	SE	15	SONFON_D	GU	GU	60
TAMBAC11	SE	SE	15	YESSOU_D	GU	GU	60
DAGANA11	SE	SE	15	NZEREK_D	GU	GU	33
CAPEB11G	SE	SE	15	TOMBOD	GU	GU	20
TAMBAC12	SE	SE	15	BANEAH_D	GU	GU	15
BELAIR1G	SE	SE	11	DONKEA_D	GU	GU	15
CAPEBI1G	SE	SE	11	SAMBANG1	GU	GU	13.2
GTI 1G	SE	SE	11	SAMBANG2	GU	GU	13.2
CAPEBI2G	SE	SE	6.6	SAMBANG3	GU	GU	13.2
CAPEBI3G	SE	SE	6.6	SAMBANG4	GU	GU	13.2
CAPEBI4G	SE	SE	6.6	TB5G3	GU	GU	11
CAPEBI5G	SE	SE	6.6	TB5G1	GU	GU	11
CAPEBI6G	SE	SE	6.6	TB5G2	GU	GU	11
CAPEBI7G	SE	SE	6.6	MANEAHG1	GU	GU	11
CAPEBI8G	SE	SE	6.6	MANEAHG2	GU	GU	11
CAPEBI9G	SE	SE	6.6	MANEAHG3	GU	GU	11
CAPEB10G	SE	SE	6.6	KALETAG1	GU	GU	10.3
					GU	GU	
SENDOU1G	SE	SE	6.6	KALETAG2			10.3
SENDOU2G	SE	SE	6.6	KALETAG3	GU	GU	10.3

Sous-station	Pays	Zone	Tension	Sous-station	Pays	Zone	Tension
Nom			kV	Nom			kV
FOMIG1	GU	GU	10.3	KENIE_05	MA	MA	150
FOMIG2	GU	GU	10.3	BALING10	MA	MA	30
FOMIG3	GU	GU	10.3	BALI1_11	MA	MA	15
DIGAN_G	GU	GU	10.3	BALI2_11	MA	MA	15
AMARYAG1	GU	GU	10.3	MANANT1G	MA	MA	11
AMARYAG2	GU	GU	10.3	MANANT2G	MA	MA	11
AMARYAG3	GU	GU	10.3	MANANT3G	MA	MA	11
AMARYAG4	GU	GU	10.3	MANANT4G	MA	MA	11
KASSAB_G	GU	GU	10.3	MANANT5G	MA	MA	11
LAFOU G	GU	GU	10.3	DARSATAC	MA	MA	11
GOZOGUEG	GU	GU	10.3	FELOU 1G	MA	MA	11
BONKONDG	GU	GU	10.3	FELOU_2G	MA	MA	11
FRANKO G	GU	GU	10.3	FELOU_3G	MA	MA	11
POUDADLG	GU	GU	10.3	ALBATR1G	MA	MA	11
BALASSAG	GU	GU	10.3	GOUINA1G	MA	MA	11
KOUKOUTG	GU	GU	10.3	GOUINA2G	MA	MA	11
BOUREYAG	GU	GU	10.3	GOUINA3G	MA	MA	11
				BADOUMG1			
DIAREGUG	GU	GU	10.3		MA	MA	11
NZEBELAG	GU	GU	10.3	BADOUMG2	MA	MA	11
KOURAVEG	GU	GU	10.3	SELING1G	MA	MA	8.66
KOUYAG	GU	GU	10.3	SOPAM_1G	MA	MA	8.66
FETORE_G	GU	GU	10.3	KENIE_1G	MA	MA	8.66
GRKINKOG	GU	GU	10.3	KENIE_2G	MA	MA	8.66
TB3G1	GU	GU	6.3	KENIE_3G	MA	MA	8.66
TB3G2	GU	GU	6.3	SIKASSO1	MA	MA	8.66
TB3G4	GU	GU	6.3	KOUTIA1G	MA	MA	8.66
TB3G3	GU	GU	6.3	VICABO1G	MA	MA	8.66
DONKEAG2	GU	GU	6.3	KOUTIA2G	MA	MA	8.66
DONKEAG1	GU	GU	6.3	BALING1G	MA	MA	6.6
GARAFIG1	GU	GU	5.65	BALING2G	MA	MA	6.6
GARAFIG2	GU	GU	5.65	BALING3G	MA	MA	6.6
GARAFIG3	GU	GU	5.65	BALING4G	MA	MA	6.6
GRCHUTG3	GU	GU	5.5	DARSAL1G	MA	MA	5.5
GRCHUTG4	GU	GU	5.5	DARSAL5G	MA	MA	5.5
GRCHUTG2	GU	GU	3.3	DARSAL6G	MA	MA	5.5
GRCHUTG1	GU	GU	3.3	DARSAL7G	MA	MA	5.5
BANEAHG1	GU	GU	3.15	SOTU1_1G	MA	MA	2
BANEAHG2	GU	GU	3.15	NIONO_1G	MA	MA	2
MANANT03	MA	MA	225	BOUGO_1G	MA	MA	2
TKITA 03	MA	MA	225	SOSUMA1G	MA	MA	2
KODIAL03	MA	MA	225	MARKALAG	MA	MA	2
KAYES 03	MA	MA	225	DARSAL8G	MA	MA	0.4
KOUTIA03	MA	MA	225	KAMAKW03	SL	SL	225
SIKASS03	MA	MA	225	KENEMA03	SL	SL	225
SEGOU 03	MA	MA	225	BUMBUN03	SL	SL	225
OULESS03	MA	MA	225	YIBEN_03	SL	SL	225
SELING03	MA	MA	225	BIKONG03	SL	SL	225
BADOUM03	MA	MA	225	BUMBUN04	SL	SL	161
FANA 05	MA	MA	150	FRTOWN04	SL	SL	161
SEGOU 05	MA	MA	150	KAMAKW D	SL	SL	33
_				_	SL	SL	33
KALABA05	MA MA	MA	150	KENEMA_D	SL	SL	33
SIRAKO05		MA	150	YIBEN_D			
KODIAL05	MA	MA	150	BIKONG_D	SL	SL	33
LAFIA_05	MA	MA	150	BUMBU1G1	SL	SL	13.8
SELING05	MA	MA	150	BUMBU1G2	SL	SL	13.8
BALING05	MA	MA	150	BUMBUN2G	SL	SL	13.8

Sous-station	Pays	Zone	Tension	Sous-station	Pays	Zone	Tension
Nom			kV	Nom			kV
BENKONGG	SL	SL	10.3	2041KOSS	CI	CI	90
BUMBUN3G	SL	SL	10.3	2330ZUEN	CI	CI	90
BUMBU45G	SL	SL	10.3	2300SERE	CI	CI	90
MONROV03	LI	LI	225	2250YAMO	CI	CI	90
YEKEPA03	LI	LI	225	2260DIMB	CI	CI	90
MANO 03	LI	LI	225	2270ATAK	CI	CI	90
BUCHAN03	LI	LI	225	2280ABEN	CI	CI	90
STPAUL03	LI	LI	225	2290AGNE	CI	CI	90
MONROV09	LI	LI	66	2031TAAB	CI	CI	90
YEKEPA D	LI	LI	33	2120AGBO	CI	CI	90
BUCHAN D	LI	LI	33	2320GAGN	CI	CI	90
MONROV D	LI	LI	33	2310DIVO	CI	CI	90
MANO D	LI	LI	33	2011ABOB	CI	CI	90
MTCOFFG1	LI	LI	10.5	2150PLAT	CI	CI	90
MTCOFFG2	LI	LI	10.5	2160BIAN	CI	CI	90
MTCOFFG2	LI	LI	10.5	2140BONG	CI	CI	90
BUCHANG1	LI	LI	10.5	2170AYAM	CI	CI	90
BUCHANG2	LI	LI	10.5	2240TREI	CI	CI	90
MTCOFFG4	LI	LI	10.5	2180AYAM	CI CI	CI	90
MANORIG1	LI	LI	10.3	2220BIAS		CI	90
MANORIG2	LI	LI	10.3	2021VRID	CI	CI	90
SPAULG11	LI	LI	10.3	2210RIVI	CI	CI	90
SPAULG12	LI	LI	10.3	2200BASS	CI	CI	90
SPAULG21	LI	LI	10.3	2190ABRO	CI	CI	90
SPAULG22	LI	LI	10.3	2081PEDR	CI	CI	90
RIVIER02	CI	CI	330	20FAYE90	CI	CI	90
2060FERK	CI	CI	225	200SIR90	CI	CI	90
2100MAN-	CI	CI	225	2000HIRE	CI	CI	90
2090BUYO	CI	CI	225	2231YOPO	CI	CI	90
2070SOUB	CI	CI	225	2130DABO	CI	CI	90
2050BOUA	CI	CI	225	2230YOPO	CI	CI	90
2040KOSS	CI	CI	225	2044KOSS	CI	CI	17
2030TAAB	CI	CI	225	2043KOSS	CI	CI	17
2010ABOB	CI	CI	225	2042KOSS	CI	CI	17
2500AZIT	CI	CI	225	2501AZI	CI	CI	15.75
2020VRID	CI	CI	225	2502AZI	CI	CI	15.75
2209RIVI	CI	CI	225	2NEWCC-1	CI	CI	15.75
2110LABO	CI	CI	225	2NEWCC-2	CI	CI	15.75
2080S-PE	CI	CI	225	20NGTAG8	CI	CI	15
2229YOPO	CI	CI	225	2027VRID	CI	CI	15
2371BUND	CI	CI	225	2028VRID	CI	CI	15
TIBOTO03	CI	CI	225	2029VRID	CI	CI	15
2061FERK	CI	CI	90	20NTAG82	CI	CI	15
2360KORH	CI	CI	90	20NTAG83	CI	CI	15
2370BUND	CI	CI	90	2032TAAB	CI	CI	13.8
23800DIE	CI	CI	90	2033TAAB	CI	CI	13.8
2111LABO	CI	CI	90	2034TAAB	CI	CI	13.8
2390SEGU	CI	CI	90	2023VGT-	CI	CI	11
2101MAN-	CI	CI	90	2022VGT-	CI	CI	11
2400DANA	CI	CI	90	2024VRID	CI	CI	11
2071SUBR	CI	CI	90	2025VRID	CI	CI	11
2071SUBR 2091BUYO	CI	CI	90		CI	CI	11
				2026VRID			
2410DALO	CI	CI	90	2093BUYO	CI	CI	10.5
2340BOUA	CI	CI	90	2094BUYO	CI	CI	10.5
2350MARA	CI	CI	90	2092BUYO	CI	CI	10.5
2051BOUA	CI	CI	90	SOUBREG1	CI	CI	10.5

Sous-station	Pays	Zone	Tension	Sous-station	Pays	Zone	Tension
Nom			kV	Nom			kV
SOUBREG2	CI	CI	10.5	KOMSILG4	BU	BU	11
SOUBREG3	CI	CI	10.5	KOMSILG3	BU	BU	11
BOUTOUBG	CI	CI	10.5	KOMSILG2	BU	BU	11
GRIBOPOG	CI	CI	10.5	KOMSILG1	BU	BU	11
TIBOTOG1	CI	CI	10.5	BOB2 2G1	BU	BU	11
TIBOTOG2	CI	CI	10.5	BOB2 2G2	BU	BU	11
TIBOTOG3	CI	CI	10.5	4BAGRE_6	BU	BU	6.6
2172AYAM	CI	CI	5.5	4KOMPI_6	BU	BU	6.6
2181AYAM	CI	CI	5.5	40UA11_6	BU	BU	6.3
2171AYAM	CI	CI	5.5	40UA12 6	BU	BU	6.3
2182AYAM	CI	CI	5.5	4BOB11_5	BU	BU	5.5
ABOCOMG1	CI	CI	5.5	4BOB12_5	BU	BU	5.5
ABOCOMG2	CI	CI	5.5	4BOB13_5	BU	BU	5.5
ABOCOMG3	CI	CI	5.5	4BOB14 5	BU	BU	5.5
OUAGAE02	BU	BU	330	4BOB21 5	BU	BU	5.5
4KODE225	BU	BU	225	4BOB22_5	BU	BU	5.5
4 PA 225	BU	BU	225	4BOB22_5	BU	BU	5.5
4ZAGT225	BU	BU	225	4BOB24_5	BU	BU	5.5
OUAGAE03	BU	BU	225	4BOB25 5	BU	BU	5.5
4BAGR132	BU	BU	132	40UA13_6	BU	BU	5.5
4KOMP132	BU	BU	132	40UA21 5	BU	BU	5.5
4PTDO132	BU	BU	132	40UA21_5	BU	BU	5.5
4ZANO132	BU	BU	132	40UA22_5	BU	BU	5.5
		BU	90			BU	5.5
4KOSSO90	BU			40UA24_5	BU		
40UAG190	BU	BU	90	40UA25_5	BU	BU	5.5
40UAG290	BU	BU	90	SMALLHYD	BU	BU	0.4
4_PC_090	BU	BU	90	1029VOLT	GH	GH	330
4ZAGTO90	BU	BU	90	ABOA_330	GH	GH	330
OUAGAE08	BU	BU	90	1591KIN3	GH	GH	330
PATDOI08	BU	BU	90	BOLGA330	GH	GH	330
4ZAGTO34	BU	BU	34.5	PRES330	GH	GH	330
4ZAGTO35	BU	BU	34.5	KSI330	GH	GH	330
4KODEN33	BU	BU	33	1758BON3	GH	GH	330
4BOB1_33	BU	BU	33	1700ASO2	GH	GH	330
4BOB2_33	BU	BU	33	1115DUNK	GH	GH	330
4KOMSI33	BU	BU	33	1560A4BS	GH	GH	330
4KOSSO33	BU	BU	33	CAPE330	GH	GH	330
4KOUA_33	BU	BU	33	1109PRES	GH	GH	225
40UAG333	BU	BU	33	1809ELUB	GH	GH	225
40UAG133	BU	BU	33	12951BOL	GH	GH	225
40UAG233	BU	BU	33	1010AKOS	GH	GH	161
4PTDOI33	BU	BU	33	1020VOLT	GH	GH	161
4ZAGTO33	BU	BU	33	1031SMEL	GH	GH	161
4BOB1_15	BU	BU	15	1032SMEL	GH	GH	161
4BOB2_15	BU	BU	15	1033SMEL	GH	GH	161
4KOSSO15	BU	BU	15	1034SMEL	GH	GH	161
40UAG115	BU	BU	15	1035SMEL	GH	GH	161
40UAG215	BU	BU	15	1036SMEL	GH	GH	161
4KOS1_11	BU	BU	11	1040TEMA	GH	GH	161
4KOS2_11	BU	BU	11	1050ACHI	GH	GH	161
4KOS3_11	BU	BU	11	1060WINN	GH	GH	161
4KOS4_11	BU	BU	11	1070C-CO	GH	GH	161
4KOS5_11	BU	BU	11	1080TAKO	GH	GH	161
4KOS6_11	BU	BU	11	1090TARK	GH	GH	161
KOMSILG5	BU	BU	11	1100PRES	GH	GH	161
	BU	BU	11	1110DUNK	GH	GH	161

Sous-station	Pays	Zone	Tension	Sous-station	Pays	Zone	Tension
Nom			kV	Nom			kV
1120OBUA	GH	GH	161	1221ASIE	GH	GH	69
1130KUMA	GH	GH	161	1230HO	GH	GH	69
1140NKAW	GH	GH	161	1240KPEV	GH	GH	69
1150TAFO	GH	GH	161	1250KPAN	GH	GH	69
1160AKWA	GH	GH	161	1255KADJ	GH	GH	69
1170KPON	GH	GH	161	1310SOGA	GH	GH	69
1180KONO	GH	GH	161	1103APRE	GH	GH	55
1190KPON	GH	GH	161	1103BPRE	GH	GH	55
1200ASAW	GH	GH	161	1241KPEV	GH	GH	34.5
1210N-OB	GH	GH	161	1251KPAN	GH	GH	34.5
1220ASIE	GH	GH	161	1311SOGA	GH	GH	34.5
1280TAMA	GH	GH	161	1341WA	GH	GH	34.5
1300BOGO	GH	GH	161	1351YEND	GH	GH	34.5
1320ABOA	GH	GH	161	1361ESSI	GH	GH	34.5
1360ESSI	GH	GH	161	1381SAWL	GH	GH	34.5
1370MALL	GH	GH	161	13091WEX	GH	GH	34.5
1390DCEM	GH	GH	161	1291BOLG	GH	GH	34.5
1392 AFT	GH	GH	161	1481Z-LV	GH	GH	34.5
1600OPB-	GH	GH	161	1279MIM	GH	GH	34.5
1800ELUB	GH	GH	161	1041T-LV	GH	GH	34.5
1470TT1P	GH	GH	161	1042T-LV	GH	GH	34.5
1260TECH	GH	GH	161	1051ACH	GH	GH	34.5
1270SUNY	GH	GH	161	1052ACH	GH	GH	34.5
1350YEND	GH	GH	161	1053ACH	GH	GH	34.5
1380SAWL	GH	GH	161	1054ACH	GH	GH	34.5
1290BOLG	GH	GH	161	1055ACH	GH	GH	34.5
1413KENY	GH	GH	161	1061AWIN	GH	GH	34.5
1309WEXF	GH	GH	161	1061BWIN	GH	GH	34.5
1095NEWT	GH	GH	161	1071BCCO	GH	GH	34.5
1700ASOG	GH	GH	161	1072C-CO	GH	GH	34.5
1900TESI	GH	GH	161	1081TAKO	GH	GH	34.5
1138T261	GH	GH	161	1082TAKO	GH	GH	34.5
1138T262	GH	GH	161	1092ATAR	GH	GH	34.5
1480ZEB	GH	GH	161	1092BTAR	GH	GH	34.5
1139K2BS	GH	GH	161	1111DUNK	GH	GH	34.5
1500BUI	GH	GH	161	1131KUMA	GH	GH	34.5
1901TES2	GH	GH	161	1132KUMA	GH	GH	34.5
1610BUIP	GH	GH	161	1133KUM1	GH	GH	34.5
1590KIN	GH	GH	161	1133KUM2	GH	GH	34.5
15533BSP	GH	GH	161	1151TAF0	GH	GH	34.5
1278MIM	GH	GH	161	1152TAFO	GH	GH	34.5
1580N AB	GH	GH	161	1161AKWA	GH	GH	34.5
1750BONY	GH	GH	161	1162AKWA	GH	GH	34.5
1990AYAN	GH	GH	161	1171KPON	GH	GH	34.5
1630HAN	GH	GH	161	1181AKON	GH	GH	34.5
1340WA	GH	GH	161	1181BKON	GH	GH	34.5
1620TUMU	GH	GH	161	1201ASAW	GH	GH	34.5
1850ATEB	GH	GH	161	1202ASAW	GH	GH	34.5
1252KPAN	GH	GH	161	1261TECH	GH	GH	34.5
1210JUAB	GH	GH	161	1271SUNY	GH	GH	34.5
		GH	161		GH	GH	34.5
1021SME2	GH			1281ATAM			
1070CCO3	GH	GH	161	1281BTAM	GH	GH	34.5
BAWKU_04	GH	GH	161	1301BOGO	GH	GH	34.5
1561A4BS	GH	GH	161	1371MALL	GH	GH	34.5
1850BERE	GH	GH	161	1391DCEM	GH	GH	34.5
1870CAPE	GH	GH	161	1327ABOA	GH	GH	34.5

Sous-station	Pays	Zone	Tension	Sous-station	Pays	Zone	Tension
Nom			kV	Nom			kV
11391K2L	GH	GH	34.5	1701ASO6	GH	GH	13.8
11392K2L	GH	GH	34.5	ABOA3CC1	GH	GH	13.8
1143NKAW	GH	GH	34.5	1758G	GH	GH	13.8
1293BOLG	GH	GH	34.5	1757G	GH	GH	13.8
1511BUIL	GH	GH	34.5	1473TT1P	GH	GH	13.8
15543BLV	GH	GH	34.5	1326ABOA	GH	GH	13.8
15553BLV	GH	GH	34.5	SASO2CC1	GH	GH	13.8
1591KIN	GH	GH	34.5	SASO2CC2	GH	GH	13.8
1611BUIP	GH	GH	34.5	HEMANGG	GH	GH	13.8
17501BON	GH	GH	34.5	PWALUGUG	GH	GH	13.8
1621TUMU	GH	GH	34.5	JUALE G	GH	GH	13.8
1631HAN	GH	GH	34.5	BTPP G1	GH	GH	13.8
1852ATEB	GH	GH	34.5	CEMPOWEG	GH	GH	13.8
1372MALL	GH	GH	34.5	SASOCC3	GH	GH	13.8
1022SM2L	GH	GH	34.5	1102APRE	GH	GH	13.2
1211DNOB	GH	GH	34.5	1102BPRE	GH	GH	13.2
1211JUAB	GH	GH	34.5	1102DF RE	GH	GH	13.2
1282ATAM	GH	GH	34.5	1222ASIA	GH	GH	11.5
1562A4BS	GH	GH	34.5	1222ASIB	GH	GH	11.5
1851BERL	GH	GH	34.5	1231HO-1	GH	GH	11.5
1871CAPL	GH	GH	34.5	10951NTA	GH	GH	11.5
1011AKOS	GH	GH	14.4	1292BOLG	GH	GH	11.5
1012AKOS	GH	GH	14.4	1071ACCO	GH	GH	11.5
1013AKOS	GH	GH	14.4	1073C-CO	GH	GH	11.5
1014AKOS	GH	GH	14.4	1121AOBU	GH	GH	11.5
1015AKOS	GH	GH	14.4	1121BOBU	GH	GH	11.5
1016AKOS	GH	GH	14.4	1121COBU	GH	GH	11.5
1501G1	GH	GH	14.4	1141NKAW	GH	GH	11.5
1502G2	GH	GH	14.4	1163AKWA	GH	GH	11.5
1503G3	GH	GH	14.4	1195KPON	GH	GH	11.5
1191KPON	GH	GH	13.8	1211ANOB	GH	GH	11.5
1192KPON	GH	GH	13.8	1211BNOB	GH	GH	11.5
1193KPON	GH	GH	13.8	1211CNOB	GH	GH	11.5
1194KPON	GH	GH	13.8	1272SUNY	GH	GH	11.5
1321ABOA	GH	GH	13.8	1273SUNY	GH	GH	11.5
1322ABOA	GH	GH	13.8	1017AKOS	GH	GH	11.5
1323ABOA	GH	GH	13.8	1294BOLG	GH	GH	11.5
1324ABOA	GH	GH	13.8	1998AYAN	GH	GH	11.5
1325ABOA	GH	GH	13.8	1164AKWA	GH	GH	11.5
10311VAL	GH	GH	13.8	1995AYAN	GH	GH	11.5
10312VAL	GH	GH	13.8	1412KENY	GH	GH	11
10313VAL	GH	GH	13.8	1581N-AB	GH	GH	11
10314VAL	GH	GH	13.8	1414KENY	GH	GH	11
10315VAL	GH	GH	13.8	1040TGEN	GH	GH	11
10316VAL	GH	GH	13.8	1101APRE	GH	GH	6.63
10317VAL	GH	GH	13.8	1101BPRE	GH	GH	6.63
10318VAL	GH	GH	13.8	1142NKAW	GH	GH	6.63
1601OPB-	GH	GH	13.8	1122AOBU	GH	GH	6.6
1602OPB-	GH	GH	13.8	1122BOBU	GH	GH	6.6
1471TT1P	GH	GH	13.8	1122COBU	GH	GH	6.6
1472TT1P	GH	GH	13.8	1212ANOB	GH	GH	6.6
1701ASO5	GH	GH	13.8	1212BNOB	GH	GH	6.6
1701ASO1	GH	GH	13.8	1212CNOB	GH	GH	6.6
1701ASO2	GH	GH	13.8	MALANV02	TB	BN	330
1701ASO3	GH	GH	13.8	SAKETE02	TB	BN	330
1701ASO4	GH	GH	13.8	3030COTO	TB	BN	161

Sous-station	Pays	Zone	Tension	Sous-station	Pays	Zone	Tension
Nom			kV	Nom			kV
3BOHI161	TB	BN	161	ADJARAG3	TB	TO	10.3
30500NIG	ТВ	BN	161	GAZAOU06	NR	CE	132
3040SAKA	ТВ	BN	161	MARADI06	NR	CE	132
3DJOU161	ТВ	BN	161	ZINDER06	NR	CE	132
PARAKO04	ТВ	BN	161	DIFFA 02	NR	EA	330
MA GLE04	ТВ	BN	161	ZABORI02	NR	FL	330
AVA 04	ТВ	BN	161	NIAMRD02	NR	FL	330
TANZOU04	ТВ	BN	161	SALKAD02	NR	FL	330
BEMBER04	ТВ	BN	161	DOSSO02	NR	FL	330
KANDI 04	TB	BN	161	NIAM2 06	NR	FL	132
GUENE_04	ТВ	BN	161	NIAM2C06	NR	FL	132
MALANV04	TB	BN	161	DOSSO_06	NR	FL	132
NATITI04	TB	BN	161	FRONT_06	NR	FL	132
AKPAKP1G	TB	BN	15	NIAMRD06	NR	FL	132
	TB	BN	15	SALKAD06	NR	FL	132
NATITI1G PORTON1G	TB	BN	15	KANDAD06	NR	FL	132
PARAKO1G	TB	BN	15		NR	FL	20
				NIAM22_D			
CAL1G	TB	BN	15	NIAM21_D	NR	FL	20
CAL_2G	TB	BN	15	NIAM2C_D	NR	FL	20
CAI3G	TB	BN	15	GOUDELG1	NR	FL	20
CAI4G	TB	BN	15	GOUDELG2	NR	FL	20
CAI5G	TB	BN	15	GOUDELG3	NR	FL	20
CAI6G	ТВ	BN	15	GOUDELG4	NR	FL	20
CAI7G	ТВ	BN	15	DYODYONG	NR	FL	20
CAI8G	ТВ	BN	15	KANDADG1	NR	FL	20
IPPSOL1G	ТВ	BN	15	KANDADG2	NR	FL	20
IPPTHE1G	ТВ	BN	15	KANDADG3	NR	FL	20
SOLBEN1G	ТВ	BN	15	KANDADG4	NR	FL	20
ADFSOL1G	TB	BN	15	SALKAD_G	NR	FL	10.5
MA_GLE1G	TB	BN	15	SALKADG2	NR	FL	10.5
MA_GLE2G	TB	BN	15	SALKADG3	NR	FL	10.5
MA_GLE3G	TB	BN	15	MAMBIL01	NI	BA	760
30101LOM	TB	TO	330	JALING01	NI	BA	760
3010LOME	TB	TO	161	GOMBE_01	NI	BA	760
3020MOME	TB	TO	161	GOMBE_02	NI	BA	330
3060NANG	ТВ	TO	161	JOS02	NI	BA	330
3ATAK161	ТВ	TO	161	YOLA_02	NI	BA	330
3LOME161	ТВ	TO	161	DAMATU02	NI	BA	330
3KARA161	ТВ	TO	161	MAIDUG02	NI	BA	330
DAPAON04	ТВ	то	161	JALING02	NI	BA	330
MANGO_04	ТВ	TO	161	MAMBIL02	NI	ВА	330
ADJARA04	ТВ	TO	161	MAMBIG01	NI	BA	15
CONTOU1G	ТВ	TO	15	MAMBIG02	NI	BA	15
LOME 1G	ТВ	ТО	15	MAMBIG03	NI	BA	15
KARA 1G	ТВ	TO	15	MAMBIG04	NI	BA	15
SOLTOG1G	ТВ	TO	15	MAMBIG05	NI	BA	15
CCTOGOG1	TB	TO	15	MAMBIG06	NI	BA	15
CCTOGOG2	TB	ТО	15	MAMBIG07	NI	BA	15
CCTOGOG2	TB	TO	15	MAMBIG08	NI	BA	15
3NGLOG12	TB	TO	11	AJAOKU01	NI	BE	760
3NGLOG12 3NEWIPP	ТВ	TO	11		NI	BE	760
				BENINN01			
3061NANG	TB	TO	10.3	AJAOKU02	NI	BE	330
3062NANG	TB	TO	10.3	ALADJA02	NI	BE	330
KETOU_G	TB	TO	10.3	BENINC02	NI	BE	330
ADJARAG1	TB	TO	10.3	DELTA_02	NI	BE	330
ADJARAG2	TB	TO	10.3	SAPELE02	NI	BE	330

Sous-station	Pays	Zone	Tension	Sous-	station	Pays	Zone	Tension
Nom			kV	Nom				kV
OMOTOS02	NI	BE	330	CALA	BA02	NI	EN	330
BENINN02	NI	BE	330	KWAL	E 02	NI	EN	330
GEREGU02	NI	BE	330		HAV02	NI	EN	330
EYAEN 02	NI	BE	330	ONITS	SH02	NI	EN	330
DELTA 06	NI	BE	132	OWER		NI	EN	330
SAPELST1	NI	BE	15.75		JRD06	NI	EN	330
SAPELST2	NI	BE	15.75	PORT		NI	EN	330
SAPELST3	NI	BE	15.75	EGBEI		NI	EN	330
SAPELST4	NI	BE	15.75		KU 02	NI	EN	330
SAPELST5	NI	BE	15.75		HAS02	NI	EN	330
SAPELST6	NI	BE	15.75	ALIAC		NI	EN	330
GEREGGT1	NI	BE	15.75	IKOTE		NI	EN	330
GEREGGT2	NI	BE	15.75	IKOTA		NI	EN	330
GEREGGT3	NI	BE	15.75		DA02	NI	EN	330
GEREGGT4	NI	BE	15.75	YENA		NI	EN	330
GEREGGT5	NI	BE	15.75	GBAR		NI	EN	330
GEREGGT5	NI	BE	15.75	NNEV		NI	EN	330
					_			
OMOT2GT1	NI	BE	15	IKOTA		NI	EN	132
OMOT2GT2	NI	BE	15		KU_06	NI	EN	132
OMOT2GT3	NI	BE	15	GBAR		NI	EN	132
OMOT2GT4	NI	BE	15	ALAO		NI	EN	17
EYAENGT1	NI	BE	15	ALAO		NI	EN	17
EYAENGT3	NI	BE	15	ETHIC		NI	EN	17
EYAENGT4	NI	BE	15	ETHIC		NI	EN	17
EYAENGT2	NI	BE	15	ETHIC		NI	EN	17
SAPELGT4	NI	BE	15	ETHIC		NI	EN	17
SAPELGT2	NI	BE	15	KWAL		NI	EN	15.75
SAPELGT3	NI	BE	15	KWAL	.CC2	NI	EN	15.75
SAPELGT1	NI	BE	15	KWAL	.CC3	NI	EN	15.75
DELTAG03	NI	BE	11.5	AFAN	1GT19	NI	EN	15.75
DELTAG04	NI	BE	11.5	AFAN	1GT20	NI	EN	15.75
DELTAG05	NI	BE	11.5	IBOM	GT03	NI	EN	15
DELTAG06	NI	BE	11.5	AFAN	16GT1	NI	EN	15
DELTAG07	NI	BE	11.5	AFAN	16GT2	NI	EN	15
DELTAG08	NI	BE	11.5	AFAN	16GT3	NI	EN	15
DELTAG09	NI	BE	11.5	AFAN	16GT4	NI	EN	15
DELTAG10	NI	BE	11.5	AFAN	16GT5	NI	EN	15
DELTAG11	NI	BE	11.5	CALA	BGT2	NI	EN	15
DELTAG12	NI	BE	11.5	CALA	BGT3	NI	EN	15
DELTAG13	NI	BE	11.5	CALA	BGT4	NI	EN	15
DELTAG14	NI	BE	11.5	CALA	BGT5	NI	EN	15
DELTAG15	NI	BE	11.5	CALA	BGT1	NI	EN	15
DELTAG16	NI	BE	11.5	EGBEI	MGT1	NI	EN	15
DELTAG17	NI	BE	11.5	EGBEI	MGT2	NI	EN	15
DELTAG18	NI	BE	11.5	EGBEI	MGT3	NI	EN	15
DELTAG19	NI	BE	11.5	ALAO	JGT1	NI	EN	15
DELTAG20	NI	BE	11.5	ALAO	JGT2	NI	EN	15
OMOTGT12	NI	BE	10.5	ALAO		NI	EN	15
OMOTGT34	NI	BE	10.5	ALAO		NI	EN	15
OMOTGT56	NI	BE	10.5	GBAR		NI	EN	15
OMOTGT78	NI	BE	10.5	GBAR		NI	EN	15
DELTT1	NI	BE	1	IKOTA		NI	EN	15
MAKURD01	NI	EN	760	IKOTA		NI	EN	15
EGBEMA01	NI	EN	760	IKOTA		NI	EN	15
AFAM 02	NI	EN	330	ALSCO		NI	EN	15
ALAOJI02	NI	EN	330	ALSCO	שוטע	NI	EN	15

Sous-station	Pays	Zone	Tension	Sous-station	Pays	Zone	Tension
Nom	•		kV	Nom	•		kV
ALSCOGT3	NI	EN	15	OSHOGB01	NI	LA	760
ALSCOGT4	NI	EN	15	ERUNKA01	NI	LA	760
ALSCOGT5	NI	EN	15	AIYEDE02	NI	LA	330
ALSCOGT6	NI	EN	15	AJA 02	NI	LA	330
OMOKUGT2	NI	EN	15	AKANGB02	NI	LA	330
OMOKUGT2	NI	EN	15	EGBIN 02	NI	LA	330
ICSPOWG1	NI	EN	15	IKEJAW02	NI	LA	330
ICSPOWG2 ICSPOWG3	NI	EN	15	OSHOGB02 ERUNKA02	NI	LA	330
	NI	EN	15		NI	LA	330
ICSPOWG4	NI	EN	15	GANMO_02	NI	LA	330
ICSPOWG5	NI	EN	15	ALAGBO02	NI	LA	330
ICSPOWG6	NI	EN	15	PAPALA02	NI	LA	330
BONMOBG1	NI	EN	15	EPE02	NI	LA	330
BONMOBG2	NI	EN	15	EGBIN_06	NI	LA	132
BONMOBG3	NI	EN	15	EGBINST1	NI	LA	16
TOTALFG1	NI	EN	15	EGBINST2	NI	LA	16
TOTALFG2	NI	EN	15	EGBINST3	NI	LA	16
TOTALFG3	NI	EN	15	EGBINST4	NI	LA	16
TOTALFG4	NI	EN	15	EGBINST5	NI	LA	16
WESTCOG1	NI	EN	15	EGBINST6	NI	LA	16
WESTCOG2	NI	EN	15	CHEVROG1	NI	LA	16
WESTCOG3	NI	EN	15	CHEVROG2	NI	LA	16
WESTCOG4	NI	EN	15	CHEVROG3	NI	LA	16
IBOMP2G4	NI	EN	15	PAPA2GT4	NI	LA	15
IBOMP2G3	NI	EN	15	PAPA2GT2	NI	LA	15
IBOMP2G2	NI	EN	15	PAPA2GT3	NI	LA	15
IBOMP2G1	NI	EN	15	PAPA2GT1	NI	LA	15
FARMELEG	NI	EN	15	EGBINGT1	NI	LA	10.5
IBOMGT01	NI	EN	11.5	EGBINGT2	NI	LA	10.5
IBOMGT02	NI	EN	11.5	EGBINGT3	NI	LA	10.5
AFAMGT15	NI	EN	11.5	EGBINGT4	NI	LA	10.5
AFAMGT16	NI	EN	11.5	EGBINGT5	NI	LA	10.5
AFAMGT17	NI	EN	11.5	EGBINGT6	NI	LA	10.5
AFAMGT18	NI	EN	11.5	EGBINGT7	NI	LA	10.5
OMOKURG1	NI	EN	11.5	EGBINGT8	NI	LA	10.5
OMOKURG2	NI	EN	11.5	EGBINGT9	NI	LA	10.5
AFAMGT13	NI	EN	10.5	PAPAGT12	NI	LA	10.5
AFAMGT14	NI	EN	10.5	PAPAGT34	NI	LA	10.5
IKOTABT1	NI	EN	1	PAPAGT56	NI	LA	10.5
OMOKU_T1	NI	EN	1	PAPAGT78	NI	LA	10.5
GBARANT1	NI	EN	1	EGBINT1	NI	LA	1
IKOTABT2	NI	EN	1	EGBINT2	NI	LA	1
GBARANT2	NI	EN	1	ABUJA 01	NI	SH	760
IKOTABT3	NI	EN	1	BIRNIN02	NI	SH	330
KADUNA01	NI	KD	760	JEBBA 02	NI	SH	330
KANO 01	NI	KD	760	JEBBAP02	NI	SH	330
KADUNA02	NI	KD	330	KAINJI02	NI	SH	330
KANO_02	NI	KD	330	KATAMP02	NI	SH	330
KATSIN02	NI	KD	330	SHIROR02	NI	SH	330
GUSAU_02	NI	KD	330	GWAGWA02	NI	SH	330
ZARIA 02	NI	KD	330	LOKOJA02	NI	SH	330
	NI	KD	132	SOKOTO02	NI	SH	330
KANKIA06							
KATSIN06	NI	KD	132	ZUNGER02	NI	SH	330
KANO06	NI	KD	132	BIRNIN06	NI	SH	132
KANOT1A	NI	KD	1	JEBBGH1	NI	SH	16
KATSINT1	NI	KD	1	JEBBGH2	NI	SH	16

Sous-station	Pays	Zone	Tension	Sous-sta	ation Pays	Zone	Tension
Nom			kV	Nom			kV
JEBBGH3	NI	SH	16	KAING1	2 NI	SH	16
JEBBGH4	NI	SH	16	SHIRGH	1 NI	SH	15.65
JEBBGH5	NI	SH	16	SHIRGH	2 NI	SH	15.65
JEBBGH6	NI	SH	16	SHIRGH	3 NI	SH	15.65
KAING05	NI	SH	16	SHIRGH	4 NI	SH	15.65
KAING06	NI	SH	16	ZUNGEF	RG1 NI	SH	15.65
KAING07	NI	SH	16	ZUNGEF	RG2 NI	SH	15.65
KAING08	NI	SH	16	ZUNGEF	RG3 NI	SH	15.65
KAING09	NI	SH	16	ZUNGEF	RG4 NI	SH	15.65
KAING10	NI	SH	16	BIRNT1	NI	SH	1
KAING11	NI	SH	16				

8.2. Charges

Charge	Noeud	Pays	P active	Q reactive	Charge	Noeud	Pays	P active	Q reactive
Nom	Nom		MW	Mvar	Nom	Nom		MW	Mvar
MBOUR_03	MBOUR_03	SE	46.8	22.7	TOMBO_D	TOMBO_D	GU	89	43.1
THIONA08	THIONA08	SE	61.7	29.9	MANEAH_D	MANEAH_D	GU	50	24.2
TAIBA_08	TAIBA_08	SE	40	19.4	SONFON_D	SONFON_D	GU	35	17
OBENE08	TOBENE08	SE	86.3	41.8	GARAFI07	GARAFI07	GU	5	2.4
(AOLAC03	KAOLAC03	SE	64.4	31.2	GRCHUT_D	GRCHUT_D	GU	10	4.8
OUBA_03	TOUBA_03	SE	75.2	36.4	NZEREK_D	NZEREK_D	GU	5	2.4
DAGANA03	DAGANA03	SE	20.5	9.9	BALI1_11	BALI1_11	MA	79.4	38.5
MATAM 08	MATAM 08	SE	30.5	14.8	BALKOU15	BALING05	MA	21	10.2
SAKAL 10	SAKAL 10	SE	66.9	32.4	KOULIK15	BALING05	MA	12.9	6.2
AEROPORT	AEROPO08	SE	42.7	20.7	FANA_15	FANA05	MA	2.5	1.2
HANN08	HANN_08	SE	143.7	69.6	FANA_30	FANA_05	MA	3.3	1.6
BELAIR08	BELAIR08	SE	150.6	72.9	KALAB 15	KALABA05	MA	46.4	22.5
CAPEBI08	CAPEBI08	SE	108.5	52.5	DIAMOU33	KAYES 03	MA	11.5	5.6
MBAO 08	MBAO 08	SE	51.3	24.8	SADIOL33	KAYES 03	MA	39	18.9
MECKHE08	MECKHE08	SE	8.5	4.1	KOUTI 33	KOUTIA03	MA	21.1	10.2
SIBA 08	SIBA 08	SE	8.5	4.1	LAFIA 15	LAFIA 05	MA	44.5	21.6
OMETA08	SOMETA08	SE	8.5	4.1	LAFIA 30	LAFIA 05	MA	29.6	14.3
JNIVERSI	UNIVER08	SE	59	28.6	LOULO	TKITA_03	MA	61.3	29.7
ZIGUIN03	ZIGUIN03	SE	31.9	15.4	TABAKOTO	MANANT03	MA	26.7	12.9
OCOCI08	SOCOCI08	SE	2.8	1.4	SEGO1 15	SEGOU 05	MA	14.4	7
TANAF 03	TANAF 03	SE	12.6	6.1	SEGO2 15	SEGOU 05	MA	14.4	7
AMBAC03	TAMBAC03	SE	51.3	24.8	KALANA 6	SELING05	MA	3.5	1.7
MAURITA1	MAURIT03	MT	48	23.2	SELING33	SELING05	MA	4	1.9
OMA 03	SOMA 03	GA	17.3	8.4	YANFOL33	SELING05	MA	3.8	1.8
BRIKAM D	BRIKAM1G	GA	145.7	70.6	SIKASS33	SIKASS03	MA	21.1	10.2
MANSOA03	MANSOA03	GB	4	1.9	SIKASS03	SIKASS03	MA	47.9	23.2
3AMBAD03	BAMBAD03	GB	4	1.9	SIRAK_15	SIRAKO05	MA	28.7	13.9
SALTHI03	SALTHI03	GB	4	1.9	TKITA_15	TKITA_03	MA	3.6	1.7
BISSAU03	BISSAU1G	GB	105	50.9	BALI1_30	BALING10	MA	8.5	4.1
INDIA07	KINDIA07	GU	12	5.8	TIENFA30	BALING10	MA	12.7	6.2
MAMOU 07	MAMOU 07	GU	21	10.2	BADA1 15	BALING10	MA	21.3	10.3
BANEAH D	BANEAH D	GU	5	2.4	BADA2 15	LAFIA 05	MA	21.3	10.3
ONKEA07	DONKEA07	GU	6	2.9	DARS1 15	BALING10	MA	25.1	12.2
	MATOTO D	GU	167	80.9	DARS2 15	LAFIA 05	MA	25.1	12.2

SOTU1_15 E SOTU2_15 E KAMAKW_D K YIBEND Y	Nom KAYES_03 BALING10 BALING10	MA MA MA	MW 18.7 9.8	9.1 4.7	Nom 1041-1 1042-1	Nom 1041T-LV 1042T-LV	GH GH	MW 417 50.1	Mvar 203.2 24.3
SOTU1_15 E SOTU2_15 E KAMAKW_D K YIBEND Y	BALING10 BALING10	MA	9.8						
SOTU2_15 E KAMAKW_D K YIBEN_D Y	BALING10			4.7					
KAMAKW_D K				4.7	1051-1		GH	92.5	44.8
YIBEN_D Y	IZ A B A A IZVAZ D		9.8			1051ACH			
	-	SL	4	1.9	1052-1	1052ACH	GH	92.5	44.8
	YIBEN_D	SL	4	1.9	1053-1	1053ACH	GH	92.5	44.8
	BIKONG_D	SL	4	1.9	1054-1	1054ACH	GH	92.5	44.8
	KENEMA_D	SL	12	5.8	1055-1	1055ACH	GH	92.5	44.8
BUMBUN04 E	BUMBUN04	SL	20	9.7	1061-A	1061AWIN	GH	11.3	5.5
FRTOWN04 F	FRTOWN04	SL	173	83.8	1061-B	1061BWIN	GH	11.3	5.5
YEKEPA D Y	YEKEPA D	LI	9	4.4	1071-B	1071BCCO	GH	45	21.8
_	BUCHAN D	LI	6	2.9	1072-2	1072C-CO	GH	45	21.8
MONROV D N		LI	74	35.8	1081-1	1081TAKO	GH	47.3	22.9
	MANO D	LI	4	1.9	1082-1	1082TAKO	GH	47.3	22.9
	2061FERK	CI	59.9	29	1092-A	1092ATAR	GH	57.1	27.7
	2360KORH	CI	32.6	15.8	1092-B	1092BTAR	GH	57.1	27.7
	2370BUND	CI	17.3	8.4	10951-1	10951NTA	GH	100.4	48.6
23800DIE 2	23800DIE	CI	8.8	4.3	1101-2	1101APRE	GH	3.6	1.7
2111LABO 2	2111LABO	CI	11.7	5.7	1101-1	1101BPRE	GH	3.6	1.7
2390SEGU 2	2390SEGU	CI	20.1	9.7	1102-2	1102APRE	GH	7.2	3.5
2101MAN- 2	2101MAN-	CI	37.4	18.1	1111-1	1111DUNK	GH	4.4	2.1
	2400DANA	CI	19	9.2	1121-1	1121AOBU	GH	14.5	7
	2071SUBR	CI	16.7	8.1	1121-2	1121BOBU	GH	14.5	7
									7
	2091BUYO	CI	3.1	1.5	1121-3	1121COBU	GH	14.5	
	2410DALO	CI	46.2	22.4	1122-1	1122AOBU	GH	6.5	3.1
	2340BOUA	CI	23	11.1	1122-2	1122BOBU	GH	6.5	3.1
2350MARA 2	2350MARA	CI	6.2	3	1122-3	1122COBU	GH	6.5	3.1
2051BOUA 2	2051BOUA	CI	81.8	39.6	1211-1	1211ANOB	GH	28.3	13.7
2041KOSS 2	2041KOSS	CI	23.5	11.4	1211-2	1211BNOB	GH	28.3	13.7
	2330ZUEN	CI	10.8	5.2	1211-3	1211CNOB	GH	28.3	13.7
	2300SERE	CI	10.2	4.9	1211-4	1211DNOB	GH	4	1.9
	2250YAMO	CI	35.7	17.3	1131-1	1131KUMA	GH	129.1	62.5
	2260DIMB	CI	10.4	5	1132-2	1132KUMA	GH	64.5	31.2
				12.2					
	2270ATAK	CI	25.2		1133-1	1133KUM1	GH	64.5	31.2
	2280ABEN	CI	12.5	6.1	1133-2	1133KUM2	GH	64.5	31.2
2290AGNE 2	2290AGNE	CI	15.7	7.6	11391	11391K2L	GH	53.8	26.1
2031TAAB 2	2031TAAB	CI	14.7	7.1	11392	11392K2L	GH	53.8	26.1
2120AGBO 2	2120AGBO	CI	35.7	17.3	1143	1143NKAW	GH	24.9	12.1
2320GAGN 2	2320GAGN	CI	38	18.4	1151-1	1151TAF0	GH	21	10.2
	2310DIVO	CI	36.2	17.5	1152-2	1152TAFO	GH	21	10.2
	2150PLAT	CI	54.6	26.4	1161-1	1161AKWA	GH	13.9	6.7
	2160BIAN	CI	136.6	66.2	1162-2	1162AKWA	GH	13.9	6.7
	2140BONG	CI	12.6	6.1	1171-1	1171KPON	GH	50.6	24.5
	2240TREI	CI	118.6	57.4	1181-A	1181AKON	GH	7.4	3.6
	2180AYAM	CI	8.5	4.1	1181-B	1181BKON	GH	7.4	3.6
2220BIAS 2	2220BIAS	CI	294	142.4	1195-1	1195KPON	GH	0.6	0.3
2021VRID 2	2021VRID	CI	112.5	54.5	1201-1	1201ASAW	GH	39.7	19.2
2210RIVI 2	2210RIVI	CI	79.4	38.5	1202-2	1202ASAW	GH	39.7	19.2
	2200BASS	CI	10.4	5	1222-1	1221ASIE	GH	1.8	0.9
	2190ABRO	CI	20.7	10	1231-1	1231HO-1	GH	11	5.3
	2081PEDR	CI	55	26.6	1241-1	1241KPEV	GH	7	3.4
		CI	0	0	1251-1	1251KPAN	GH	17.9	8.7
	200SIR90		-						
	20FAYE90	CI	0	0	1261-1	1261TECH	GH	24.8	12
	2130DABO	CI	28.5	13.8	1271-1	1271SUNY	GH	26.3	12.7
	2011ABOB	CI	226	109.5	1272-1	1272SUNY	GH	26.3	12.7
2230YOPO 2	2230YOPO	CI	268.7	130.1	1279-1	1279MIM	GH	26.9	13
2231YOPO 2	2231YOPO	CI	46.6	22.6	1281-A	1281ATAM	GH	29.2	14.1
	2000HIRE	CI	16.7	8.1	1281-B	1281BTAM	GH	29.2	14.1
	4BAGR132	BU	2.5	1.2	1290_1	1291BOLG	GH	5.3	2.6
	4_PA_225	BU	31.7	15.4	1290_2	1292BOLG	GH	5.3	2.6
	4KOSSO90	BU	45.9	22.2	1293	1293BOLG	GH	5.3	2.6
	40UAG190	BU	125.3	60.7	1294	1294BOLG	GH	5.3	2.6
	40UAG290	BU	101.3	49.1	1301-1	1301BOGO	GH	78.2	37.9
	4ZAGTO90	BU	27	11.5	13091-1	13091WEX	GH	21.7	10.5
	4KOMP132	BU	1.6	0.8	1311-1	1311SOGA	GH	19	9.2
4PTDOI33 4	4PTDOI33	BU	53.2	25.8	1327-1	1327ABOA	GH	0.3	0.1
40UAG333 4	40UAG333	BU	4.1	2	1341-1	1341WA	GH	11.1	5.4
	4BOB1_33	BU	44.7	21.6	13511	1351YEND	GH	12.8	6.2
	4BOB2_33	BU	35.4	17.1	1361-1	1361ESSI	GH	30.7	14.9
_	4ZAGTO33	BU	3.6	1.7	1371-1	1371MALL	GH	146.9	71.1
	4KODEN33	BU	16.9	8.2	13811	1381SAWL	GH	2.8	1.4
	4ZAGTO34	BU	1.1	0.5	1391-1	1391DCEM	GH	26.4	12.8
	1017AKOS	GH	9.9	4.8	1412-1	1412KENY	GH	65.8	31.9
	1022SM2L	GH	29.4	14.2	1481-1	1481Z-LV	GH	11.9	5.8
103111 1	10311VAL	GH	0	0	1511	1511BUIL	GH	1.8	0.9
103121 1	10312VAL	GH	121.7	58.9	15543	15543BLV	GH	147.6	71.5
102161	10313VAL	GH	121.7	58.9	15553	15553BLV	GH	147.6	71.5
		GH	121.7	58.9	1581-1	1581N-AB	GH	65.3	31.6
103131 1	10314VAL								
103131 1 103141 1	10314VAL								
103131 1 103141 1 103151 1	10315VAL	GH	0	0	1591	1591KIN	GH	7	3.4
103131 1 103141 1 103151 1 103161 1									

Charge	Noeud	Pays	P active	Q reactive	Charge	Noeud	Pays	P active	Q reactive
Nom	Nom		MW	Mvar	Nom	Nom		MW	Mvar
17501	17501BON	GH	1.7	0.8	GANMO 02	GANMO 02	NI	271	131.3
1852-1	1852ATEB	GH	3.5	1.7	OSHOGB02	OSHOGB02	NI	1106	535.7
1998-1	1998AYAN	GH	19.3	9.3	KANO06	KANO_06	NI	675	326.9
1211JUAB	1211JUAB	GH	1.7	0.8	BIRNIN02	BIRNIN02	NI	317	153.5
BATAK161	3ATAK161	TB	22.3	10.8	JEBBA_02	JEBBA_02	NI	43	20.8
3BOHI161	3BOHI161	TB	44.8	21.7	KATAMP02	KATAMP02	NI	691	334.7
3020MOME	3020MOME	TB	74.8	36.2	GWAGWA02	GWAGWA02	NI	389	188.4
BLOME161	3LOME161	TB	116.3	56.3	LOKOJA02	LOKOJA02	NI	158	76.5
3010LOME	3010LOME	TB	346.3	167.7	SHIROR02	SHIROR02	NI	448	217
3040SAKA	3040SAKA	TB	6.3	3.1	OMOTOS02	OMOTOS02	NI	279	135.1
3030COTO	3030COTO	TB	418.6	202.7	BENINN02	BENINN02	NI	242	117.2
3KARA161	3KARA161	TB	33.2	16.1	BENINC02	BENINC02	NI	491	237.8
BDJOU161	3DJOU161	TB	0.1	0	ALADJA02	ALADJA02	NI	175	84.8
AVA04	AVA04	TB	19.2	9.3	AJAOKU02	AJAOKU02	NI	85	41.2
DAPAON04	DAPAON04	TB	7.1	3.4	PORTHA02	PORTHA02	NI	404	195.7
MALANV04	MALANV04	TB	2	1	AFAM 02	AFAM 02	NI	263	127.4
MA GLE04	MA GLE04	TB	48.4	23.4	ALAOJI02	ALAOJI02	NI	1030	498.9
PARAKO04	PARAKO04	TB	53.5	25.9	CALABA02	CALABA02	NI	202	97.8
GAZAOU06	GAZAOU06	NR	5	2.4	MAKURD02	MAKURD06	NI	202	97.8
MARADI06	MARADI06	NR	10	4.8	NEWHAV02	NEWHAV02	NI	568	275.1
ZINDER06	ZINDER06	NR	34	16.5	ONITSH02	ONITSH02	NI	619	299.8
NIAM22I	NIAM22_D	NR	50	24.2	OWERRI02	OWERRI02	NI	202	97.8
DOSSO	DOSSO_06	NR	7	3.4	GOMBE_02	GOMBE_02	NI	317	153.5
MAIN	NIAM2_06	NR	138	66.8	DAMATU02	DAMATU02	NI	138	66.8
DIFFA_02	DIFFA_02	NR	8	3.9	MAIDUG02	MAIDUG02	NI	258	125
(ATS4D	KATSIN06	NI	300	145.3	JOS02	JOS02	NI	317	153.5
DELTA 06	DELTA 06	NI	179	86.7	YOLA 02	YOLA 02	NI	186	90.1
KEJAW02	IKEJAW02	NI	2099	1016.6	JALING02	JALING02	NI	138	66.8
RUNKA02	ERUNKA02	NI	702	340	EGBIN_02	EGBIN_02	NI	995	481.9
AJA02	AJA02	NI	795	385	PAPALA02	PAPALA02	NI	298	144.3
ALAGBO02	ALAGBO02	NI	542	262.5	SOKOTO02	SOKOTO02	NI	252	122
AKANGB02	AKANGB02	NI	1559	755.1	KADUNA02	KADUNA02	NI	858	415.5
AIYEDE02	AIYEDE02	NI	914	442.7	ZARIA 02	ZARIA 02	NI	293	141.9

8.3. Shunts

Banc	Noeud	Pays	Tension	Puissance	Banc	Banc	Noeud	Pays	Tension	Puissance	Banc
Nom	Nom	Nom	kV	Mvar/step	#steps	Nom	Nom	Nom	kV	Mvar/step	#steps
REAC 1	TOBENE03	SE	225	-20	1	DABOLA03	DABOLA03	GU	225	-15	2
REAC 4	DAGANA03	SE	225	-20	1	LINSANGM	LINSAN03	GU	225	-15	2
REAC 6	MATAM_03	SE	225	-20	1	MALI_SS	MALI_03	GU	225	-20	1
REAC 8	SAKAL_03	SE	225	-20	1	LABESS	LABE03	GU	225	-20	1
KAOLACSS	KAOLAC03	SE	225	-20	1	BOKE_SS	BOKE_03	GU	225	-20	1
TANAF_SS	TANAF_03	SE	225	-20	1	SAMBANSS	SAMBAG03	GU	225	-20	1
TAMBACSS	TAMBAC03	SE	225	-20	1	KALETASS	KALETA03	GU	225	-20	1
REAC 5	DAGANA03	SE	225	-25	1	LINSANSS	LINSAN03	GU	225	-20	1
REAC 7	MATAM_03	SE	225	-25	1	FOMIBUND	FOMI03	GU	225	-20	2
KAOLACOL	KAOLAC03	SE	225	-25	3	MALI_OL	MALI_03	GU	225	-25	2
TANAF_OL	TANAF_03	SE	225	-25	2	LABE_OL	LABE03	GU	225	-25	2
TAMBACOL	TAMBAC03	SE	225	-25	2	BOKE_OL	BOKE_03	GU	225	-25	2
CAPTHION	THIONA08	SE	90	10	2	KALETAOL	KALETA03	GU	225	-25	2
САРТОВ90	TOBENE08	SE	90	10	4	SAMBANOL	SAMBAG03	GU	225	-25	2
CAPBELAI	BELAIR08	SE	90	10	3	LINSANOL	LINSAN03	GU	225	-25	2
COND 2	BELAIR08	SE	90	8	1	REACAMAR	AMARYA03	GU	225	-25	1
COND 3	BELAIR08	SE	90	8	1	MAMOU 07	MAMOU 07	GU	110	3.84	1
CAPTAIBA	TAIBA_08	SE	90	5	3	SONFON_D	SONFON_D	GU	60	3.84	3
SOMA_SS	SOMA_03	GA	225	-20	1	MANEAH_D	MANEAH_D	GU	60	3.84	1
BRIKAMSS	BRIKAM03	GA	225	-20	1	MATOTO_D	MATOTO_D	GU	60	3.84	25
SOMA_OL	SOMA_03	GA	225	-25	2	TOMBO_D	TOMBO_D	GU	20	3.84	10
BRIKAMOL	BRIKAM03	GA	225	-25	1	SELING03	SELING03	MA	225	-15	2
MANSOASS	MANSOA03	GB	225	-20	1	KODIALGM	KODIAL03	MA	225	-15	2
BISSAUSS	BISSAU03	GB	225	-20	1	REAC 11	KAYES_03	MA	225	-20	1
BAMBACSS	BAMBAD03	GB	225	-20	1	REAC 9	MANANT03	MA	225	-25	1
SALTINSS	SALTHI03	GB	225	-20	1	MANANTA1	MANANT03	MA	225	-25	1
MANSOAOL	MANSOA03	GB	225	-25	2	KODIALA1	KODIAL03	MA	225	-25	1
BISSAUOL	BISSAU03	GB	225	-25	1	KOUTIA03	KOUTIA03	MA	225	-25	1
BAMBACOL	BAMBAD03	GB	225	-25	2	REACSIKA	SIKASS03	MA	225	-25	1
SALTINOL	SALTHI03	GB	225	-25	2	REAC 10	KAYES_03	MA	225	-30	1
CAPABISS	BISSAU1G	GB	30	10	2	CAPLAFIA	LAFIA_05	MA	150	10	3
NZEREK03	NZEREK03	GU	225	-5	1	CAPBALIN	BALING10	MA	30	10	3
SIGUIR03	SIGUIR03	GU	225	-15	2	CA2BALIN	BALI1_11	MA	15	10	3
KANKAN03	KANKAN03	GU	225	-15	2	FRTOWN04	FRTOWN04	SL	161	5	15
BEYLA_03	BEYLA_03	GU	225	-15	2	YEKEPA03	YEKEPA03	LI	225	-5	1
NZEREKGM	NZEREK03	GU	225	-15	2	RIVIER02	RIVIER02	CI	330	20	1
FOMI 03	FOMI 03	GU	225	-15	2	CAPAFERK	2060FERK	CI	225	10	8 (
KOROUS03	KOROUS03	GU	225	-15	2	CAPABUND	2371BUND	CI	225	10	2

CAMARAND C. 225	Banc	Noeud	Pays	Tension	Puissance	Banc	Banc	Noeud	Pays	Tension	Puissance	Banc
CAMAMARD CI	Nom	Nom	Nom	kV	Mvar/step	#steps	Nom	Nom	Nom	kV	Mvar/step	#steps
2718.000		2100MAN-	CI		-20		1261TEC2		GH		5.4	
SCREERLY STATES	CAPALABO		CI	225	-20	1	10312V12	10312VAL	GH	13.8	20	
MASCADES MONTENER C. C. 228		2371BUND	CI	225			10313V12	10313VAL	GH	13.8		
REACTEN SOSPETE CI 225 -40 1 11026976 1032976 GH 13.2 20 1 1002076 1002976 GH 13.2 20 1 1002076 1002976 GH 13.2 20 1 1002076 1002976 1002976 GH 13.2 20 1 1002076 1002976 1002976 GH 13.5 20 1 1 1002076 1002976 1002976 GH 13.5 20 1 1 1002076 1002976 1002976 GH 13.5 20 1 1 1002076 1002976 100			CI						GH			
2200APM 2200APM CI 90 12 1 110CPPE GH 132 20 3 4 4 4 4 4 4 4 4 4												
2290ABEN C SO 12 1 1211ANOS G1 115 5.4 3												
CAPAMON CO	2270ATAK		CI				1102CPRE	1102CPRE	GH			
CARADING 2500MB C			CI					1211ANOB	GH			
CARADAND 231000AD	CAPAYAMO	2250YAMO	CI	90	12	1	1211BNOB	1211BNOB	GH	11.5	5.4	1
CAMPANDO 23300ARD C		2260DIMB	CI	90	12	1	1211CNOB	1211CNOB	GH	11.5	5.4	1
23250600 3000400 10 90 10 2 1581-34 2581-34 6 11 5 4 2 2 2 2 2 2 2 2 2			CI					1272SUNY	GH			
CAPANIDAD DECEMBER CL 90 7.2 3 1101APRE 101APRE 09 6.63 1.2 2.	CAPADABO	2130DABO	CI	90	12		1231HO-1	1231HO-1	GH	11.5	5.4	
CAPARIAN JSGRIAN C C 90 7.2 5 11018PRE 6H 6.6 18 1.2 C CAPARIVI ZICROVI C C 90 7.2 2 11012200U JT2200U JT2200U JC 6 6 18 2 3 C CAPARIVI ZICROVI C C 90 7.2 1 112200U JT2200U JT2200U JC 6 6 1.8 2 3 C CAPARIO ZICROVI C C 90 7.2 3 112200U JT2200U JT220U JC 6 6 1.8 2 3 C CAPARIO ZICROVI C C 90 7.2 3 1 112200U JT220U JT220U JC 6 6 1.8 2 3 C CAPARIO ZICROVI C C 90 7.2 15 1 3000C 300CC 3 SOCCO 3	2320GAGN	2320GAGN	CI	90	10		1581N-AB	1581N-AB	GH	11	5.4	
CAPAPAMP 1909 T. 1909 T. 2	CAPAVRID	2021VRID	CI	90	7.2		1101APRE	1101APRE	GH	6.63	1.2	
CAPARIM 2108PN	CAPABIAN	2160BIAN	CI	90	7.2		1101BPRE	1101BPRE	GH	6.63	1.2	2
CAPARIBE ZAUTREE CI 90 7.2 3 1122COBU 1252COBU 69 6.6 1.8 2.4 CAPARAGO ZAUROPO CI 90 7.2 8 300	CAPAPLAT	2150PLAT	CI	90	7.2	2	1122AOBU	1122AOBU	GH	6.6	1.8	
CAPARAGO 22018AGO CI 90 7.2 8 INTMALZ MALANYOZ 16 330 -30 -30 -30 -30 -30 -30 -30 -30 -30		2210RIVI						1122BOBU	GH	6.6	1.8	
CAPANDON 2289/OPPO			CI	90	7.2		1122C0BU	1122COBU	GH	6.6	1.8	2
CAPABAGS 22208AS CI 990 7.1 14 3.00ME161 30.0ME161 18 161 5 1 161 3 3 3 CAPAGAGG 240AAGG 240DALO CI 990 6 1 3 350OMIG 18 161 3 3 3 CAPAGAGG 240DALO CI 990 5 3 3 PABAGGO PABACOOU 18 161 3 3 3 CAPAGAGG 250CORD CI 990 5 5 3 3 SARAGGI 18 161 18 18 161 18 161 18 18 161 18 18 161 18 18 161 18 18 161 18 18 161 18 18 161 18 18 161 18 18 161 18 18 161 18 18 18 18 18 18 18 18 18 18 18 18 18	CAPAABOB	2011ABOB	CI	90	7.2	8	INTMAL02	MALANV02	TB	330	-30	1
CAPAGNOR 2290AONE C C 90 6 1 S500MG SEDONIG TB 161 3.3 SACAPABLO 240AOLO C C 90 5 3 SACAPABLO 250AOLO C C 90 5 3 SACAPABLO 250AOLO C C 90 5 3 SACAPABLO 250AOLO C C 90 5 7 SACAPABO 250AOLO C C 90 7 SACAPABO 250AOLO C C 90 7 SACAPABO 250AOLO C C 90 8 SACAPABO 250AOLO C 25	CAPAYOPO	2230YOPO	CI	90	7.2	15	3030COTO	3030COTO	TB	161	50	1
CAPABOLO 2400ALO CI 990 5 3 3 PARACOO PARACOO 18 15 161 33 2 6 6 7 CAPABOLO 250RONH CI 990 5 3 3 SARAPIGI ST 161 161 138 1 161	CAPABIAS	2220BIAS	CI	90	7.1	14	3LOME161	3LOME161	TB	161	5	1
CAPARIDUA 280KORPH CT 99 5 7 3 SARABASIS SKARASIS TR 161 181 181 181 318 318 318 318 318 318 31	CAPAAGNE	2290AGNE	CI	90	6	1	30500NIG	30500NIG	TB	161	-3	3
CAPAGEO 20180UA												
REACBOOLA 24000UA		2360KORH										
INTOLANG QUAGAERQ 20		2051BOUA	CI				SALKAD02	SALKAD02	NR			
CAPAZAGT 42.67125 U 225		2340BOUA	CI						NR		-58.7	
## ## ## ## ## ## ## ## ## ## ## ## ##	INTOUA02	OUAGAE02	BU	330			DOSSO	DOSSO_06	NR	132	16	
## 24AGT225			BU						NR			
4.PA_225												
##OMP122 GROMP132 BU 132 -4.5 1 NIAMZNI NIAMZC, D NR 20 4 7.5 3 ##OTO132 BU 132 -4.5 1 GREENANDI SERININDI NI 760 -7.5 3 ##OTO132 BU 90 10 3 BENINDI BENINDI NI 760 -7.5 3 ##OTO142 AUDIGO BU 90 10 3 BENINDI BENINDI NI 760 -7.5 3 ##OTO143 BU 33 -4.8 1 BENINDI BENINDI NI 760 -7.5 3 ##OTO14 ATO133 BU 33 -4.8 1 BENINDI BENINDI NI 760 -7.5 3 ##OTO14 ATO133 BU 33 -4.8 1 BENINDI BENINDI NI 760 -7.5 3 ##OTO14 ATO133 BU 33 -4.8 1 BENINDI BENINDI NI 760 -7.5 3 ##OTO14 AUDIGO AUDIGO NI 760 -7.5 3 ##OTO15 AUDIGO AUDIGO NI 760 -7.5 3 ##OTO16 AUDIGO AUDIGO AUDIGO AUDIGO AUDIGO NI 760 -7.5 3 ##OTO17 AUDIGO AUDIGO AUDIGO AUDIGO AUDIGO NI 760 -7.5 3 ##OUAGEZ AUDIGO		4ZAGT225	BU	225	-15	2	GAZAO206	GAZAOU06	NR	132	-5	1
APTOD132	4_PA_225	4_PA_225	BU	225	-30	1	NIAM22	NIAM22_D	NR	20	10	
CAPOLIAGY 40UAG290 8U 90 10 3 BENINO12 BRINNO1 NI 760 -75 3 40UAG333 40UAG333 8U 93 34 8 1 BENINO13 BENINO1 NI 760 -75 3 40UAG333 40UAG333 8U 33 4.8 1 BENINO13 BENINO10 NI 760 -75 3 40UAG33 40UAG333 8U 33 4.8 1 BENINO13 BENINO10 NI 760 -75 3 40VAG31 40VAG313 8U 15 4.8 1 ABUAD13 BENINO10 NI 760 -75 3 40VAG11 40VAG015 8U 15 4.8 1 ABUAD11 ABUA D1 NI 760 -75 3 40VAG21 40VAG115 8U 15 4.8 1 ABUAD11 ABUA D1 NI 760 -75 3 40VAG21 40VAG215 8U 15 4.8 4 ABUAD11 ABUA D1 NI 760 -75 5 3 40VAG21 40VAG215 8U 15 4.8 4 ABUAD13 ABUA D1 NI 760 -75 5 3 40VAG21 40VAG215 8U 15 1.5 2 ABUAD13 ABUA D1 NI 760 -75 5 3 40VAG21 40VAG215 8U 15 1.2 5 ABUAD13 ABUA D1 NI 760 -75 5 40VAG23 40VAG215 8U 15 1.2 5 ABUAD13 ABUAD13 ABUAD10 NI 760 -75 10 40VAG21 40VAG215 8U 15 1.2 5 ABUAD13 ABUAD13 ABUAD10 NI 760 -75 10 40VAG21 40VAG215 8U 15 0.6 2 ABUAD13 ABUAD10 NI 760 -75 10 40VAG31 40VAG315 8U 15 0.6 2 ABUAD13 ABUAD10 NI 760 -75 10 40VAG31 40VAG		4KOMP132	BU	132	-4.5	1	NIAM2N1	NIAM2C_D	NR	20	4	
CAPOLIGG29 ADUAG290 BU 90 10 3 BENINO11 BENINO11 NI 760 -75 75 75 75 75 75 75 7	4PTDO132	4PTDO132	BU	132	-4.5	1	EGBEMA01	EGBEMA01	NI	760	-75	
## APTOPLY	CAPOUA19	40UAG190	BU	90	10	3	BENIN012	BENINN01	NI	760	-75	3
APTODICI APTODICIS BU 33 4.8 1	CAPOUG29	40UAG290	BU	90	10	3	BENIN011	BENINN01	NI	760	-75	3
## APTON 2012 PTDO033 BU 33 3.3.5 1	40UAG333	40UAG333	BU	33	4.8		ERUNKA01	ERUNKA01	NI	760	-75	
AKOSSO15 BU 15 4.8 1 ALOKU012 ALOKU01 NI 760 -75 3	4PTDOI1	4PTDOI33	BU	33	4.8	1	BENIN013	BENINN01	NI	760	-75	3
4QUAG11 4QUAG115 BU 15 4.8 1 ABULAQ11 NI 760 -75 8 4QUAG21 4QUAG215 BU 15 4.8 1 ABULAQ11 NI 760 -75 8 4QUAG21 4QUAG215 BU 15 3 1 ALAOK013 AIAOK010 NI 760 -75 8 4QUAG21 4QUAG215 BU 15 1.5 2 MAKURD21 MAKURD21 NI 760 -75 15 4QUAG21 4QUAG215 BU 15 1.5 2 MAKURD21 NI 760 -75 16 4QUAG21 4QUAG115 BU 15 1.2 5 MAKURD21 NI 760 -75 10 4KOS2 1 4KOSSO15 BU 15 0.9 1 MAMBIRD1 NI 760 -75 10 4KOS2 1 4KOSSO15 BU 15 0.9 1 MAMBIRD1 NI 760 -75 10 4KOS3 1 AKOSSO15 BU 15 0.9 1 MAMBIRD1 NI 760 -75 10 4KOS3 1 MAKURD31 NI 760 -75 10 4QUAG13 QUAG115 BU 15 0.6 1 I JAIND31 JAIND31 NI 760 -75 10 4QUAG13 QUAG115 BU 15 0.6 1 I JAIND32 JAIND31 NI 760 -75 10 4QUAG14 QUAG15 BU 15 0.3 1 ABUJAD32 ABUJA 01 NI 760 -75 10 4QUAG14 QUAG15 BU 15 0.3 1 ABUJAD32 ABUJA 01 NI 760 -75 10 4QUAG14 QUAG15 BU 16 1 8.5 4 KADUND31 KADUNAD1 NI 760 -75 10 4QUAG14 QUAG15 BU 16 1 8.5 4 KADUND31 KADUNAD1 NI 760 -75 10 4QUAG14 QUAG15 BU 16 1 1 12 2 Q GSHOG01 NI 760 -75 10 4QUAG14 QUAG15 BU 16 1 11 12 2 Q GSHOG01 NI 760 -75 10 4QUAG14 QUAG15 BU 16 1 11 12 Q QUAG15 NI 760 -75 10 4QUAG14 QUAG15 BU 16 NI 760 -75 10 4QUAG16 BU 16 NI 760 -75 10 4QU	4PTDOI2	4PTDOI33	BU	33	-3.5	1	AJAOK011	AJAOKU01	NI	760	-75	3
ADUAG212 ADUAG215 BU	4KOS1_1	4KOSSO15	BU	15	4.8	1	AJAOK012	AJAOKU01	NI	760	-75	3
ADUAG212 ADUAG215 BU	40UAG11	40UAG115	BU	15	4.8	1	ABUJA011	ABUJA_01	NI	760	-75	3
4QUAG213 4QUAG215 8U 15 15 2 MAKUR012 MAKUR011 NI 760 -75 10 4KOS2 4KOSSO15 8U 15 0.9 1 MAMBI011 MAMBI011 NI 760 -75 10 4KOS2 4KOSSO15 8U 15 0.69 2 JAILNO11 JAILNO01 NI 760 -75 10 4KOS3 4KOSSO15 8U 15 0.69 2 JAILNO11 JAILNO01 NI 760 -75 10 4KOS3 4KOSSO15 8U 15 0.69 2 JAILNO11 JAILNO01 NI 760 -75 70 4UAG13 4UAG115 8U 15 0.3 1 GOMBE 01 GOMBE 01 NI 760 -75 75 4UAG14 4UAG115 8U 15 0.3 1 GOMBE 01 GOMBE 01 NI 760 -75 75 4UAG14 4UAG115 8U 15 0.3 1 GOMBE 01 GOMBE 01 NI 760 -75 73 13SOYEND 3SOYEND GH 161 2 1 KADUNO11 KADUNO11 NI 760 -75 3 13SOYEND 3SOYEND GH 161 -8.5 4 KADUNO12 KADUNO11 NI 760 -75 3 13SOSAWL 3SOSOMU GH 161 -8.5 2 CSHOG012 CSHOG001 NI 760 -75 3 12SOTECH 12GOTECH GH 161 -8.5 2 CSHOG012 CSHOG001 NI 760 -75 10 10SJACH 10SJACH GH 34.5 21.6 2 MAMBI013 MAMBI01 NI 760 -75 10 10SJACH 10SJACH GH 34.5 21.6 2 MAMBI013 MAMBI01 NI 760 -75 10 10SJACH 10SJACH GH 34.5 21.6 2 MAMBI013 MAMBI01 NI 760 -75 10 10SJACH 10SJACH GH 34.5 21.6 2 MAMBI013 MAMBI01 NI 760 -75 10 10SJACH 10SJACH GH 34.5 21.6 2 MAMBI013 MAMBI01 NI 760 -75 10 10SJACH 10SJACH GH 34.5 21.6 2 MAMBI013 MAMBI01 NI 760 -75 10 10SJACH 10SJACH GH 34.5 21.6 2 MAMBI03 MAMBI01 NI 760 -75 10 10SJACH 10SJACH GH 34.5 21.6 1 JAILNO31 MAMBI01 NI 760 -75 10 10SJACH 10SJACH GH 34.5 21.6 1 JAILNO31 MAMBI01 NI 760 -75 10 10SJACH 10SJACH GH 34.5 21.6 1 JAILNO31 MAMBI01 NI 760 -75 10 10SJACH 10SJACH GH 34.5 21.6 1 JAILNO30 NI 330 100 2 10SJACH 10SJACH GH 34.5 21.6 2 MAMBI03 MAMBI01 NI 760 -75 10 10SJACH 10SJA	40UAG21	40UAG215	BU	15	4.8	4	MAKUR011	MAKURD01	NI	760	-75	8
AUMAGIL2 AUMAGIL5 BU	4OUAG22	40UAG215	BU	15	3	1	AJAOK013	AJAOKU01	NI	760	-75	5
AKOSSO15 BU	4OUAG23	40UAG215	BU	15	1.5	2	MAKUR012	MAKURD01	NI	760	-75	10
AKOSSO15 BU	40UAG12	40UAG115	BU	15	1.2	5	MAMBI011	MAMBIL01	NI	760	-75	10
ADUAG13 ADUAG115 BU	4KOS2_1	4KOSSO15	BU	15	0.9	1	MAMBI012	MAMBIL01	NI	760	-75	10
AOUAG14 AOUAG15 BU	4KOS3_1	4KOSSO15	BU	15	0.69	2	JALIN011	JALING01	NI	760	-75	10
1130KUMS 1130KUMA GH 161 25 1 ABUJAO12 ABUJAO1 NI 760 -75 33 1350YEND 1550YEND GH 161 2 1 KADUNO11 KADUNAO1 NI 760 -75 33 1380SAWL 1380SAWL GH 161 -8.5 4 KADUNO12 KADUNAO1 NI 760 -75 33 1380SAWL 1380SAWL GH 161 -8.5 2 KANO_011 KANO_01 NI 760 -75 33 1380SAWL 1380SAWL GH 161 -8.5 2 OSHOGO11 OSHOGBO1 NI 760 -75 33 1380SAWL 1380SAWL GH 161 -8.5 2 OSHOGO11 OSHOGBO1 NI 760 -75 33 1380SAWL 150SACH GH 161 -12 2 OSHOGO11 OSHOGBO1 NI 760 -75 33 1380SAWL 150SACH GH 34.5 21.6 2 MAMBIO13 MAMBILD1 NI 760 -75 20 1051ACH 1051ACH GH 34.5 21.6 2 MAMBIO13 MAMBILD1 NI 760 -75 10 1052ACH 1053ACH GH 34.5 21.6 1 JALIND3 JALINO01 NI 760 -75 10 1053ACH 1053ACH GH 34.5 21.6 1 JALIND3 JALINO01 NI 760 -75 10 1053ACH 1053ACH GH 34.5 21.6 1 JALIND3 JALINO01 NI 760 -75 10 1053ACH 1053ACH GH 34.5 21.6 1 JALIND3 JALINO01 NI 760 -75 10 1054ACH 1054ACH GH 34.5 21.6 1 JALIND3 JALINO01 NI 760 -75 10 1054ACH 1054ACH GH 34.5 21.6 1 JALIND3 JALINO01 NI 760 -75 10 1055ACH 1055ACH GH 34.5 21.6 1 JALIND3 JALINO01 NI 760 -75 10 1055ACH 1055ACH GH 34.5 21.6 1 JALIND3 JALINO01 NI 760 -75 10 1055ACH 1055ACH GH 34.5 21.6 1 JALIND3 JALINO01 NI 760 -75 10 1055ACH 1055ACH GH 34.5 21.6 1 JALIND3 JALINO01 NI 760 -75 10 1055ACH 1055ACH GH 34.5 21.6 1 MARWBO JALINO01 NI 760 -75 10 1055ACH 1055ACH GH 34.5 21.6 1 MARWBO JALINO01 NI 760 -75 10 1055ACH 1055ACH GH 34.5 21.6 1 MARWBO JALINO01 NI 330 100 2 115543BLV 15543BLV GH 34.5 10.8 1 KELAWCR NI 330 100 2 11391K21 1393K21 GH 34.5 10.8 1 KADURS KADUNAO2 NI 330 -30 1 1071BCCO 1071BCCO GH 34.5 10.8 1 NAVEDEOS AVEDEOZ NI 330 -30 1 1131KUM1 1313KUM1 GH 34.5 10.8 2 GOMBR GOMBE QU NI 330 -30 1 11313KUM1 133KUM1 GH 34.5 10.8 2 GOMBR GOMBE QU NI 330 -30 1 11313KUM1 133KUM1 GH 34.5 10.8 1 NADWR GOMBE QU NI 330 -30 1 11313KUM1 133KUM1 GH 34.5 10.8 1 NADWR GOMBE QU NI 330 -30 -30 1 11313KUM1 133KUM1 GH 34.5 10.8 1 NADWR GOMBE QU NI 330 -75 1 1092TARK 1092TAR GH 34.5 10.8 1 NADWR GOMBE QU NI 330 -75 1 1092TARK 1092TAR GH 34.5 10.8 1 NADWR GOMBE QU NI 330 -75 1 1092TARK 1092TAR GH 34.5 10.8 1 NADWR GOMBE QU NI 330 -75 1 1092TARK 1	40UAG13	40UAG115	BU	15	0.6	1	JALIN012	JALING01	NI	760	-75	7
1350YEND 1350YEND GH 161 2	40UAG14	40UAG115	BU	15	0.3	1	GOMBE_01	GOMBE_01	NI	760	-75	7
1280TAMA 1280TAMA GH 161 -8.5 4 KADUNO12 KADUNAO1 NI 760 -75 3 3 1380SAWL 1380SAWL 1380SAWL 6H 161 -8.5 2 KANO_011 KANO_01 NI 760 -75 3 3 1290BOLG 1290BOLG GH 161 -8.5 2 OSHOGOI1 OSHOGOIN NI 760 -75 3 3 1290BOLG 1290BOLG GH 161 -12 2 OSHOGOI1 OSHOGOIN NI 760 -75 3 2 1051ACH 1051ACH GH 34.5 21.6 2 MAMBIOLI MAMBILOI NI 760 -75 10 1052ACH 1052ACH GH 34.5 21.6 2 MAMBIOLI MAMBILOI NI 760 -75 10 1052ACH 1052ACH GH 34.5 21.6 1 JALINO13 JALINGOI NI 760 -75 10 1053ACH 1053ACH GH 34.5 21.6 2 MAMBIOLI MAMBILOI NI 760 -75 10 1053ACH 1053ACH GH 34.5 21.6 2 MAMBIOLI MAMBILOI NI 760 -75 10 1053ACH 1053ACH GH 34.5 21.6 2 MAMBIOLI MAMBILOI NI 760 -75 10 1053ACH 1053ACH GH 34.5 21.6 2 MAMBIOLI MAMBILOI NI 760 -75 10 1053ACH 1053ACH GH 34.5 21.6 1 JALINO13 JALINGOI NI 760 -75 10 1053ACH 1053ACH GH 34.5 21.6 2 MAMBIOLI MAMBILOI NI 330 100 6 2 1041T-LV GH 34.5 21.6 1 MALGBOOZ AKANGBOZ NI 330 100 2 2 1041T-LV GH 34.5 21.6 7 AJA_0Z AJA_0Z NI 330 100 2 2 1041T-LV GH 34.5 21.6 1 MAKUROO MAKUROO NI 330 100 2 2 1041T-LV GH 34.5 21.6 1 MAKUROO MAKUROO NI 330 100 2 2 11553BLV 1553BLV GH 34.5 21.6 1 MAKUROO MAKUROO NI 330 100 5 1 11391KZL GH 34.5 21.6 1 MAKUROO MAKUROO NI 330 6 1 1 11392KZL GH 34.5 11.8 1 KADURZ KADUNAOZ NI 330 30 -30 11 1131KUM1 1313KUM1 GH 34.5 10.8 1 KADURZ KADUNAOZ NI 330 -30 1 1 1131KUM1 1313KUM1 GH 34.5 10.8 1 KADURZ KADUNAOZ NI 330 -30 1 1 1131KUM1 1313KUM1 GH 34.5 10.8 2 GOMBR GOMBE CZ NI 330 -30 1 1 1131KUM1 1313KUM1 GH 34.5 10.8 2 GOMBR GOMBE CZ NI 330 -30 1 1 1131KUM1 1313KUM1 GH 34.5 10.8 2 BENIRZ BENIRCO NI 330 -30 -30 1 1 1131KUM1 1313KUM1 GH 34.5 10.8 1 NI NI NI NI NI MAKUROO NI 330 -75 1 1 1131KUM1 1313KUM1 GH 34.5 10.8 1 NI	1130KUM5	1130KUMA	GH	161	25	1	ABUJA012	ABUJA_01	NI	760	-75	3
1380SAWL 1380SAWL GH 161 -8.5 2 KANO_011 KANO_01 NI 760 -75 3 1260TECH 1260TECH GH 161 -8.5 2 OSHOG011 OSHOGBOI NI 760 -75 3 1260TECH 1260TECH GH 161 -12 2 OSHOG011 OSHOGBOI NI 760 -75 3 1250SACH 1051ACH GH 34.5 21.6 2 MAMBIO13 MAMBILO1 NI 760 -75 10 1052ACH 1051ACH GH 34.5 21.6 1 JALINO13 JALINGO1 NI 760 -75 10 1053ACH 1053ACH GH 34.5 21.6 1 JALINO13 JALINGO1 NI 760 -75 10 1053ACH 1054ACH GH 34.5 21.6 1 JALINO13 JALINGO1 NI 760 -75 10 1054ACH 1054ACH GH 34.5 21.6 1 JALINO13 JALINGO1 NI 760 -75 10 1054ACH 1054ACH GH 34.5 21.6 1 JALINO13 JALINGO1 NI 760 -75 10 1055ACH 1055ACH GH 34.5 21.6 1 JALINO13 JALINGO1 NI 760 -75 10 1055ACH 1055ACH GH 34.5 21.6 2 KANGGO2 NI 330 100 2 1055ACH 1055ACH GH 34.5 21.6 1 ALAGBO2 ALAGBO2 NI 330 100 2 1055ACH 1055ACH GH 34.5 21.6 1 MAKURDO MAKURDO NI 330 100 2 1041T-LV 1041T-LV GH 34.5 21.6 2 KELAWCR KIEJAWCR NI 330 100 2 15553BLV 15543BLV GH 34.5 21.6 2 KELAWCR KIEJAWCR NI 330 100 2 15553BLV 15543BLV GH 34.5 21.6 1 MAKURDO MAKURDO NI 330 100 2 15553BLV 15543BLV GH 34.5 21.6 1 MAKURDO MAKURDO NI 330 20 10 1339KZL 1399KZL GH 34.5 11.8 1 KADURZ KADUROZ NI 330 20 10 1339KZL 1399KZL GH 34.5 11.8 1 KADURZ KADUROZ NI 330 -30 11 1071BCCO 1071BCCO GH 34.5 10.8 1 KADURZ KADUROZ NI 330 -30 11 1071BCCO 1071BCCO GH 34.5 10.8 1 KADURZ KADUROZ NI 330 -30 11 1131KUMA 1131KUMA GH 34.5 10.8 1 KADURZ KADUROZ NI 330 -30 11 1131KUMA 1131KUMA GH 34.5 10.8 2 GOMBR GOMBE QZ NI 330 -30 11 1133KUM1 1131KUMA GH 34.5 10.8 2 GOMBR GOMBE QZ NI 330 -30 -30 11 1133KUM1 1133KUM1 GH 34.5 10.8 1 NITHIROZ BENINCOZ NI 330 -50 11 1133KUM1 1133KUM1 GH 34.5 10.8 1 NITHIROZ BENINCOZ NI 330 -50 11 1133KUM1 1133KUM1 GH 34.5 10.8 1 NITHIROZ BENINCOZ NI 330 -50 11 1133KUM1 1133KUM1 GH 34.5 10.8 1 NITHIROZ BENINCOZ NI 330 -50 11 1133KUM1 1133KUM1 GH 34.5 10.8 1 NITHIROZ BENINCOZ NI 330 -50 11 1133KUM1 1133KUM1 GH 34.5 10.8 1 NITHIROZ BENINCOZ NI 330 -50 11 1133KUM1 1133KUM1 GH 34.5 10.8 1 NITHIROZ BENINCOZ NI 330 -50 11 11092TARK 1092TARK GH 34.5 10.8 1 NITHIROZ BENINCOZ NI 330 -55 11 1091BTARK 1092TARK GH 34.5 10.8 1 NITHIRO	1350YEND	1350YEND	GH	161	2	1	KADUN011	KADUNA01	NI	760	-75	3
1260TECH 1260TECH GH 161 -8.5 2 OSHOG011 OSHOGB01 NI 760 -75 3 3 1290BOLG 1290BOLG GH 161 -12 2 OSHOG012 OSHOGB01 NI 760 -75 2 1 1 1 1 1 1 1 1 1	1280TAMA	1280TAMA	GH	161	-8.5	4	KADUN012	KADUNA01	NI	760	-75	3
1290BOLG 1290BOLG GH 161 -12 2 0 OSHOG012 OSHOGB01 NI 760 -75 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1380SAWL	1380SAWL	GH	161	-8.5	2	KANO_011	KANO01	NI	760	-75	3
1051ACH 1051ACH GH 34.5 21.6 2 MAMBI013 MAMBILO1 NI 760 -75 10 1052ACH 1052ACH GH 34.5 21.6 2 MAMBI014 MAMBILO1 NI 760 -75 10 1053ACH 1053ACH GH 34.5 21.6 1 JALINGO1 NI 760 -75 10 1053ACH 1053ACH GH 34.5 21.6 2 AKANGBO2 AKANGBO2 NI 330 100 6 1055ACH 1055ACH GH 34.5 21.6 1 ALAGBOO2 AKANGBO2 NI 330 100 6 1055ACH 1055ACH GH 34.5 21.6 7 AIA_O2 AIA_O2 NI 330 100 2 1041T-LV GH 34.5 21.6 7 AIA_O2 AIA_O2 NI 330 100 5 15543BLV GH 34.5 21.6 2 KEJAWCA KEJAWCA NI 330 100 5 15553BLV 15553BLV GH 34.5 21.6 1 MAKURDO6 MAKURDO6 NI 330 60 1 11392K2L 11392K2L GH 34.5 21.6 1 AYEDEO8 AYEDEO2 NI 330 20 10 11391K2L GH 34.5 21.6 1 AYEDEO8 AYEDEO2 NI 330 -30 1 1071ECCO 1071BCCO GH 34.5 10.8 1 KADUR3 KADUNAO2 NI 330 -30 1 1072C-CO 1072C-CO GH 34.5 10.8 1 KADUR3 KADUNAO2 NI 330 -30 1 1132KUMA 1131KUMA GH 34.5 10.8 2 GOMBR3 GOMBE_O2 NI 330 -30 1 1133KUM1 1133KUM1 GH 34.5 10.8 2 GOMBR3 GOMBE_O2 NI 330 -30 1 1133KUM1 1133KUM1 GH 34.5 10.8 2 GOMBR4 GOMBE_O2 NI 330 -30 1 1133KUM1 1133KUM1 GH 34.5 10.8 2 BENIRCO NI 330 -30 1 1133KUM1 1133KUM1 GH 34.5 10.8 2 BENIRCO NI 330 -30 1 1133KUM1 1133KUM1 GH 34.5 10.8 2 BENIRCO NI 330 -30 1 1133KUM1 1133KUM1 GH 34.5 10.8 2 BENIRCO NI 330 -30 1 1133KUM1 1133KUM1 GH 34.5 10.8 2 BENIRCO NI 330 -30 1 1133KUM1 1133KUM1 GH 34.5 10.8 1 NITBIRO2 BIRNINO2 NI 330 -30 1 1127ISUNY 1271SUNY GH 34.5 10.8 1 NITBIRO2 BIRNINO2 NI 330 -75 1 1092BTAR GH 34.5 10.8 1 NITBIRO2 BIRNINO2 NI 330 -75 1 1092BTAR GH 34.5 10.8 1 NITBIRO2 BIRNINO2 NI 330 -75 1 109	1260TECH	1260TECH	GH	161	-8.5	2	OSHOG011	OSHOGB01	NI	760	-75	3
1052ACH 1052ACH GH 34.5 21.6 2 MAMBI014 MAMBILO1 NI 760 -75 10 1053ACH 1053ACH GH 34.5 21.6 1 JALINO3 JALINGO1 NI 760 -75 10 1053ACH 1053ACH GH 34.5 21.6 1 JALINO3 JALINGO1 NI 760 -75 10 10 1054ACH 1054ACH GH 34.5 21.6 2 AKANGBO2 NI 330 100 6 10 1055ACH 1055ACH 1055ACH GH 34.5 21.6 1 ALAGBOO2 AKANGBO2 NI 330 100 2 10 10 11 11 11 11 11 11 11 11 11 11 11	1290BOLG	1290BOLG	GH	161	-12	2	OSHOG012	OSHOGB01	NI	760	-75	2
1053ACH 1053ACH 6H 34.5 21.6 1 JALINO13 JALING01 NI 760 -75 100 1054ACH 6H 34.5 21.6 2 AKANGB02 AKANGB02 NI 330 100 6 1055ACH 1055ACH 6H 34.5 21.6 1 ALAGBO02 ALAGBO02 NI 330 100 6 1055ACH 1055ACH 6H 34.5 21.6 1 ALAGBO02 ALAGBO02 NI 330 100 2 1055ACH 1055ACH 6H 34.5 21.6 7 AJA_02 AJA_02 NI 330 100 2 15553BLV 15553BLV 6H 34.5 21.6 2 IKEJAWCR IKEJAWC2 NI 330 100 2 15553BLV 15553BLV 6H 34.5 21.6 1 MAKURD06 MAKURD06 NAKURD06 NI 330 100 2 11392K2L 11392K2L 6H 34.5 21.6 1 MAKURD06 MAKURD06 NI 330 20 10 11392K2L 11391K2L 6H 34.5 18 1 KADUR2 KADUNA02 NI 330 20 10 1071BCCO 1071BCCO 6H 34.5 10.8 1 KADUR3 KADUNA02 NI 330 -30 1 1071CCCO 1072C-CO 6H 34.5 10.8 1 AJAOR1 AJAOKU02 NI 330 30 30 1 1071CCCO 1072C-CO 6H 34.5 10.8 1 AJAOR1 AJAOKU02 NI 330 30 30 1 1133KUMA 1131KUMA 6H 34.5 10.8 2 GOMBA GOMBE_02 NI 330 30 30 1 1133KUM1 133KUM1 GH 34.5 10.8 2 GOMBA GOMBE_02 NI 330 30 30 1 1133KUM1 133KUM1 GH 34.5 10.8 2 GOMBA GOMBE_02 NI 330 30 30 1 1133KUM1 133KUM2 GH 34.5 10.8 2 GOMBA GOMBE_02 NI 330 30 30 1 1133KUM1 133KUM1 GH 34.5 10.8 2 GOMBA GOMBE_02 NI 330 30 30 1 1133KUM1 133KUM1 GH 34.5 10.8 2 GOMBA GOMBE_02 NI 330 30 30 30 1 1133KUM1 133KUM2 GH 34.5 10.8 2 GOMBA GOMBE_02 NI 330 30 30 30 1 1133KUM1 133KUM2 GH 34.5 10.8 2 GOMBA GOMBE_02 NI 330 30 30 30 1 1133KUM1 133KUM2 GH 34.5 10.8 2 GOMBA GOMBE_02 NI 330 30 30 30 1 1133KUM1 133KUM2 GH 34.5 10.8 1 INTBIRO2 BIRNINO2 NI 330 30 30 30 1 1133KUM1 1371MALL GH 34.5 10.8 1 INTBIRO2 BIRNINO2 NI 330 30 30 30 30 1 1133KUM1 1371MALL GH 34.5 10.8 1 INTBIRO2 BIRNINO2 NI 330 -50 1 11271SUNY 1271SUNY GH 34.5 10.8 1 INTBIRO2 BIRNINO2 NI 330 -75 1 11092ATAR GH 34.5 10.8 1 INTBIRO2 BIRNINO2 NI 330 -75 1 11092ATAR GH 34.5 10.8 1 INTBIRO2 BIRNINO2 NI 330 -75 1 11092ATAR GH 34.5 10.8 1 INTBIRO2 BIRNINO2 NI 330 -75 1 11092ATAR GH 34.5 10.8 1 INTBIRO2 BIRNINO2 NI 330 -75 1 11092ATAR GH 34.5 10.8 1 INTBIRO2 BIRNINO2 NI 330 -75 1 11092ATAR GH 34.5 10.8 1 INTBIRO2 BIRNINO2 NI 330 -75 1 11092ATAR GH 34.5 10.8 1 INTBIRO2 BIRNINO2 NI 330 -75 1 11092ATAR GH 34.5 10.8 1 INTBIRO2 BIRNINO3 NI 330 -75 1 11092AT	1051ACH	1051ACH	GH	34.5	21.6	2	MAMBI013	MAMBIL01	NI	760	-75	10
1054ACH 1054ACH GH 34.5 21.6 2 AKANGB02 AKANGB02 NI 330 100 6 1055ACH 1055ACH GH 34.5 21.6 1 ALAGBO02 ALAGBO02 NI 330 100 2 1041T-LV GH 34.5 21.6 7 AJA_02 AJA_02 NI 330 100 2 15543BLV 15543BLV GH 34.5 21.6 2 IKEJAWCR IKEJAWCR IKEJAWCR NI 330 100 5 15553BLV 15553BLV GH 34.5 21.6 1 MAKURDO6 MAKURDO6 NI 330 20 10 11392KZL 11392KZL GH 34.5 21.6 1 MAKURDO6 MAKURDO6 NI 330 20 10 11392KZL 11391KZL GH 34.5 18 1 KADURZ KADUNA02 NI 330 20 10 10 11391KZL GH 34.5 10.8 1 KADURZ KADUNA02 NI 330 30 30 30 30 10 10 10 10 10 10 10 10 10 10 10 10 10	1052ACH	1052ACH	GH	34.5	21.6	2	MAMBI014	MAMBIL01	NI	760	-75	10
1055ACH 1055ACH GH 34.5 21.6 1 ALAGBO02 ALAGBO02 NI 330 100 2 1041T-LV 1041T-LV GH 34.5 21.6 7 AJA_02 AJA_02 NI 330 100 2 15543BLV 15553BLV GH 34.5 21.6 1 MAKURDO6 MAKURDO6 NI 330 100 5 11392K2L 11392K2L GH 34.5 21.6 1 MAKURDO6 MAKURDO6 NI 330 20 10 11392K2L 11392K2L GH 34.5 18 1 KADUR2 KADUNA02 NI 330 30 30 30 10 1071BCCO 1071BCCO GH 34.5 18 1 KADUR2 KADUNA02 NI 330 30 30 30 10 1071C-CC 1072C-CC GH 34.5 10.8 1 KADUR3 KADUNA02 NI 330 30 30 30 1131KUMA 1131KUMA GH 34.5 10.8 1 AJAGRI AJAGRU02 NI 330 30 30 30 1131KUMA 1132KUMA GH 34.5 10.8 2 GOMBR3 GOMBE 02 NI 330 30 30 30 1133KUM1 1133KUM1 GH 34.5 10.8 2 GOMBR4 GOMBE 02 NI 330 30 30 30 1131XUM1 1133KUM1 GH 34.5 10.8 2 BENIR2 BENIRCO2 NI 330 30 30 30 1131XUM1 1133KUM1 GH 34.5 10.8 2 BENIR2 BENIRCO2 NI 330 30 30 30 1131XUM1 1133KUM1 GH 34.5 10.8 2 BENIR2 BENIRCO2 NI 330 30 30 30 1131XUM1 1133KUM1 GH 34.5 10.8 2 BENIR2 BENIRCO2 NI 330 30 30 30 1131XUM1 1133KUM1 GH 34.5 10.8 2 BENIR2 BENIRCO2 NI 330 30 30 30 1131XUM1 1133KUM1 GH 34.5 10.8 2 BENIR2 BENIRCO2 NI 330 30 30 30 1131XUM1 1131XUM2 GH 34.5 10.8 1 INTBIRO2 BIRNINO2 NI 330 30 30 30 1131XIMM1 GH 34.5 10.8 1 INTBIRO2 BIRNINO2 NI 330 30 30 30 30 31 30 30 30 30 30 30 30 30 30 30 30 30 30	1053ACH	1053ACH	GH	34.5	21.6		JALIN013	JALING01	NI	760	-75	10
1041T-LV 1041T-LV GH 34.5 21.6 7 AJA_02 AIA_02 NI 330 100 2 15543BLV 15543BLV GH 34.5 21.6 2 IKEJAWCR IKEJAWC2 NI 330 100 5 15553BLV 15553BLV GH 34.5 21.6 1 MAKURD06 MAKURD06 NI 330 60 1 13192K2L 11392K2L GH 34.5 21.6 1 AYEDE08 AIYEDE02 NI 330 20 11 1391K2L GH 34.5 18 1 KADUR2 KADUNA02 NI 330 -30 1 1071BCCO 1071BCCO GH 34.5 10.8 1 KADUR3 KADUNA02 NI 330 -30 1 1072C-CO 1072C-CO GH 34.5 10.8 1 AJAOR1 AJAOKU02 NI 330 -30 1 1131KUMA I131KUMA GH 34.5 10.8 2 GOMBR3 GOMBE_02 NI 330 -30 1 1133KUMA I133KUMA GH 34.5 10.8 2 GOMBR3 GOMBE_02 NI 330 -30 1 1133KUMA I133KUMA GH 34.5 10.8 2 GOMBR4 GOMBE_02 NI 330 -30 1 1133KUM1 GH 34.5 10.8 2 BENINC0 NI 330 -30 1 1133KUM1 GH 34.5 10.8 2 BENINC0 NI 330 -30 1 1133KUM1 GH 34.5 10.8 2 BENINC0 NI 330 -30 1 1133KUM1 GH 34.5 10.8 2 BENINC0 NI 330 -30 1 1133KUM1 GH 34.5 10.8 2 BENINC0 NI 330 -30 1 1133KUM1 GH 34.5 10.8 2 BENINC0 NI 330 -30 1 1133KUM1 GH 34.5 10.8 2 BENINC0 NI 330 -30 1 1133KUM1 GH 34.5 10.8 2 BENINC0 NI 330 -30 1 1133KUM1 GH 34.5 10.8 2 BENINC0 NI 330 -30 1 1133KUM1 GH 34.5 10.8 2 BENINC0 NI 330 -30 1 11092TARK 1092ATAR GH 34.5 10.8 1 INTBIR02 BIRNINO2 NI 330 -30 -50 1 1127ISUNY 127ISUNY GH 34.5 10.8 1 INTBIR02 BIRNINO2 NI 330 -50 1 127ISUNY GH 34.5 10.8 1 INTBIR02 BIRNINO2 NI 330 -50 1 1092BTAR GH 34.5 10.8 1 INTBIR02 BIRNINO2 NI 330 -75 1 1092BTAR GH 34.5 10.8 1 IKEWR1 IKEJAWO2 NI 330 -75 1 1092BTAR GH 34.5 10.8 1 IKEWR1 IKEJAWO2 NI 330 -75 1 1082TAKO 1082TAKO GH 34.5 10.8 1 IKEWR1 IKEJAWO2 NI 330 -75 1 1082TAKO 1082TAKO GH 34.5 10.8 1 IKEWR1 IKEJAWO2 NI 330 -75 1 1082TAKO 1082TAKO GH 34.5 10.8 1 IKEWR1 IKEJAWO2 NI 330 -75 1 1082TAKO 1082TAKO GH 34.5 10.8 1 IKEWR1 IKEJAWO2 NI 330 -75 1 1082TAKO 1082TAKO GH 34.5 10.8 1 IKEWR1 IKEJAWO2 NI 330 -75 1 1082TAKO 1081TAKO GH 34.5 10.8 1 IKEWR1 IKEJAWO2 NI 330 -75 1 1082TAKO 1081TAKO GH 34.5 10.8 1 IKEWR1 IKEJAWO2 NI 330 -75 1 1082TAKO 1082TAKO GH 34.5 10.8 1 IKANOR1 KADUNA02 NI 330 -75 1 1082TAKO 1082TAKO GH 34.5 10.8 1 IKANOR1 KADUNA02 NI 330 -75 1 11081BNOGO 1301BOGO GH 34.5 10.8 1 IKANOR1 KADUNA02 NI 330 -75 1 11081BNOGO		1054ACH	GH	34.5	21.6	2	AKANGB02	AKANGB02	NI	330	100	6
15543BLV 15543BLV GH 34.5 21.6 2 IKEJAWCR KEJAWC2 NI 330 100 55 15553BLV 15553BLV GH 34.5 21.6 1 MAKURD06 MAKURD06 NI 330 60 1 1392KZL 11392KZL GH 34.5 21.6 1 AYEDEOS AIYEDEOZ NI 330 20 10 1391KZL 11391KZL GH 34.5 18 1 KADURZ KADUNAOZ NI 330 -30 1 1071BCCO 1071BCCO GH 34.5 10.8 1 KADUR3 KADUNAOZ NI 330 -30 1 1072C-CO 1072C-CO GH 34.5 10.8 1 AJAOR1 AJAOKUOZ NI 330 -30 1 131KUMA 1131KUMA GH 34.5 10.8 2 GOMBR3 GOMBE_0Z NI 330 -30 1 1133KUMA 1131KUMA GH 34.5 10.8 2 GOMBR3 GOMBE_0Z NI 330 -30 1 1133KUMA 1133KUM1 GH 34.5 10.8 2 BENIRZ BENINCOZ NI 330 -30 1 1133KUM1 133KUM1 GH 34.5 10.8 2 BENIRZ BENINCOZ NI 330 -30 1 1092TARK 1092ATAR GH 34.5 10.8 1 INTBIROZ BIRNINOZ NI 330 -30 1 1371MALL 1371MALL GH 34.5 10.8 1 INTBIROZ BIRNINOZ NI 330 -30 1 1271SUNY 1271SUNY GH 34.5 10.8 1 GOMBR1 GOMBE_0Z NI 330 -30 1 1271SUNY 1271SUNY GH 34.5 10.8 1 INTBIROZ BIRNINOZ NI 330 -30 1 1271SUNY 1271SUNY GH 34.5 10.8 1 GOMBR2 GOMBE_0Z NI 330 -50 1 1271SUNY 1271SUNY GH 34.5 10.8 1 GOMBR2 GOMBE_0Z NI 330 -50 1 1202ASAW 1202ASAW GH 34.5 10.8 1 GOMBR2 GOMBE_0Z NI 330 -50 1 1092TARK 1092BTAR GH 34.5 10.8 1 GOMBR2 GOMBE_0Z NI 330 -75 1 1092BTAR 1092BTAR GH 34.5 10.8 1 INTBIROZ BIRNINOZ NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 1 IKEVR1 IKEJAWOZ NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 1 IKEVR1 IKEJAWOZ NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 1 KEVR1 IKEJAWOZ NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 1 KEVR1 IKEJAWOZ NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 1 KEVR1 IKEJAWOZ NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 1 KEVR1 KEJAWOZ NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 1 KADUR1 KADUNAOZ NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 1 KADUR1 KADUNAOZ NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 1 KADUR1 KADUNAOZ NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 1 KATAR1 KATAMPOZ NI 330 -75 1 1061BWIN 1061BWIN GH 34.5 10.8 1 KATAR1 KATAMPOZ NI 330 -75 1 1261TECH 1261TECH 6H 34.5 5.4 2 KATSADC1 KATSINO6 NI 330 -75 1	1055ACH	1055ACH	GH	34.5	21.6		ALAGBO02	ALAGBO02	NI	330	100	
15553BLV 15553BLV GH 34.5 21.6 1 MAKURDO6 MAKURDO6 NI 330 60 1 11391K2L 11391K2L GH 34.5 18 1 KADUR2 KADUNAO2 NI 330 -30 1 1071BCCO 1071BCCO GH 34.5 10.8 1 KADUR3 KADUNAO2 NI 330 -30 1 1072C-CO 1072C-CO GH 34.5 10.8 1 AJAOR1 AJAOKUO2 NI 330 -30 1 1131KUMA 1131KUMA GH 34.5 10.8 2 GOMBR3 GOMBE_02 NI 330 -30 1 1132KUMA 1132KUMA GH 34.5 10.8 2 GOMBR3 GOMBE_02 NI 330 -30 1 1133KUMA 1132KUMA GH 34.5 10.8 2 BENIR2 BENINCO2 NI 330 -30 1 1133KUM1 1133KUM1 GH 34.5 10.8 2 BENIR2 BENINCO2 NI 330 -30 1 1092TARK 1092ATAR GH 34.5 10.8 2 ALAOR1 ALAOJIO2 NI 330 -30 1 1071MALL 371MALL GH 34.5 10.8 1 INTBIRO2 BIRNINO2 NI 330 -30 1 1271SUNY 1271SUNY GH 34.5 10.8 1 GOMBR1 GOMBE_02 NI 330 -30 1 1271SUNY 1271SUNY GH 34.5 10.8 1 GOMBR1 GOMBE_02 NI 330 -30 1 1271SARW 1092ATAR GH 34.5 10.8 1 INTBIRO2 BIRNINO2 NI 330 -30 1 1271SARW 1202ASAW GH 34.5 10.8 1 GOMBR1 GOMBE_02 NI 330 -50 1 1271SUNY 1271SUNY GH 34.5 10.8 1 GOMBR2 GOMBE_02 NI 330 -50 1 1271SARW 1202ASAW GH 34.5 10.8 1 BENIR1 BENINCO2 NI 330 -75 1 1092BTAR 1092BTAR GH 34.5 10.8 1 BENIR1 BENINCO2 NI 330 -75 1 1092BTAR 1092BTAR GH 34.5 10.8 1 BENIR1 BENINCO2 NI 330 -75 1 1082TAKO 1081TAKO GH 34.5 10.8 1 IEBBR2 JEBBA_02 NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 1 IEBBR2 JEBBA_02 NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 1 KADUR1 KADUNAO2 NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 1 KADUR1 KADUNAO2 NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 1 KADUR1 KADUNAO2 NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 1 KADUR1 KADUNAO2 NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 1 KADUR1 KADUNAO2 NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 1 KADUR1 KADUNAO2 NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 1 KADUR1 KADUNAO2 NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 1 KATAR1 KATAMPO2 NI 330 -75 1 1061BWIN GH 34.5 10.8 1 KATAR1 KATAMPO2 NI 330 -75 1 1061BWIN GH 34.5 10.8 1 KATAR1 KATAMPO2 NI 330 -75 1 1261TECH 1261TECH 6H 34.5 5.4 2 KATSADC1 KATSINO6 NI 132 20 1	1041T-LV	1041T-LV	GH	34.5	21.6		AJA02	AJA02	NI	330	100	2
11392K2L 11392K2L GH 34.5 21.6 1 AYEDE08 AIYEDE02 NI 330 20 10 11391K2L 11391K2L GH 34.5 18 1 KADUR2 KADUNA02 NI 330 -30 1 1071BCCO 1071BCCO GH 34.5 10.8 1 KADUR3 KADUNA02 NI 330 -30 1 1072C-CO 1072C-CO GH 34.5 10.8 1 AJAORI AJAOKU02 NI 330 -30 1 1131KUMA 1131KUMA GH 34.5 10.8 2 GOMBR3 GOMBE_02 NI 330 -30 1 1132KUMA 1132KUMA GH 34.5 10.8 2 BENIR2 BENIRC0 NI 330 -30 1 1133KUM1 1133KUM1 GH 34.5 10.8 2 BENIR2 BENIRC0 NI 330 -30 1 1133KUM2 1133K	15543BLV	15543BLV	GH	34.5	21.6	2	IKEJAWCR	IKEJAW02	NI	330	100	5
11391K2L 11391K2L GH 34.5 18 1 KADUR2 KADUNA02 NI 330 -30 1 1071BCCO 1071BCCO GH 34.5 10.8 1 KADUR3 KADUNA02 NI 330 -30 1 1072C-CO 1072C-CO GH 34.5 10.8 1 AJAOR1 AJAORU02 NI 330 -30 1 1131KUMA 1131KUMA GH 34.5 10.8 2 GOMBR3 GOMBE_02 NI 330 -30 1 1132KUMA 1133KUM1 GH 34.5 10.8 2 BENIR2 BENINCO2 NI 330 -30 1 1133KUM1 1133KUM2 GH 34.5 10.8 2 BENIR2 BENINCO2 NI 330 -30 1 1137LML 133KUM2 GH 34.5 10.8 1 INTBIRO2 BIRNINO2 NI 330 -30 1 192TARK 1092T	15553BLV	15553BLV	GH	34.5	21.6		MAKURD06	MAKURD06	NI	330	60	1
1071BCCO 1071BCCO GH 34.5 10.8 1 KADUR3 KADUNA02 NI 330 -30 1 1072C-CO 1072C-CO GH 34.5 10.8 1 AJAOR1 AJAOKU02 NI 330 -30 1 1131KUMA 1131KUMA GH 34.5 10.8 2 GOMBR3 GOMBE_02 NI 330 -30 1 1133KUMA 1133KUMA GH 34.5 10.8 2 GOMBR4 GOMBE_02 NI 330 -30 1 1133KUM1 1133KUM1 GH 34.5 10.8 2 BENIR2 BENIRO2 NI 330 -30 1 1092TARK 1092ATAR GH 34.5 10.8 1 INTBIRO2 BIRNINO2 NI 330 -30 1 1371MALL 1371MALL GH 34.5 10.8 4 GOMBR1 GOMBE_0 NI 330 -50 1 1202ASAW 12	11392K2L	11392K2L	GH	34.5	21.6	1	AYEDE08	AIYEDE02	NI	330	20	10
1072C-CO 1072C-CO GH 34.5 10.8 1 AJAOR1 AJAOKU02 NI 330 -30 1 1131KUMA 1131KUMA GH 34.5 10.8 2 GOMBR3 GOMBE_02 NI 330 -30 1 1132KUMA 1132KUMA GH 34.5 10.8 2 GOMBR4 GOMBE_02 NI 330 -30 1 1133KUM1 1133KUM1 GH 34.5 10.8 2 BENIR2 BENIRCO2 NI 330 -30 1 1133KUM2 1133KUM2 GH 34.5 10.8 2 BENIR2 BENIRCO2 NI 330 -30 1 1133KUM2 1133KUM2 GH 34.5 10.8 2 ALAOR1 ALAOJIO2 NI 330 -30 1 1092TARK 1092ATAR GH 34.5 10.8 1 INTBIRO2 BIRNINO2 NI 330 -30 1 1371MALL 1371MALL GH 34.5 10.8 1 INTBIRO2 BIRNINO2 NI 330 -30 1 1271SUNY 1271SUNY GH 34.5 10.8 4 GOMBR1 GOMBE_02 NI 330 -50 1 1271SUNY 1271SUNY GH 34.5 10.8 1 GOMBR2 GOMBE_02 NI 330 -50 1 1202ASAW 1202ASAW GH 34.5 10.8 1 GOMBR2 GOMBE_02 NI 330 -75 1 1092BTAR 1092BTAR GH 34.5 10.8 2 BENIR1 BENINCO2 NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 1 IKEWR1 IKEJAW02 NI 330 -75 1 1082TAKO 1082TAKO GH 34.5 10.8 1 JEBBR JEBBR_02 NI 330 -75 1 1082TAKO 1081TAKO GH 34.5 10.8 1 KEWR1 IKEJAW02 NI 330 -75 1 1081TAKO 1081BWIN GH 34.5 10.8 1 KADUR1 KADUNAO2 NI 330 -75 1 1061BWIN GH 34.5 10.8 1 KADUR1 KADUNAO2 NI 330 -75 1 1061BWIN GH 34.5 10.8 1 KADUR1 KADUNAO2 NI 330 -75 1 1061BWIN GH 34.5 10.8 1 KATAR1 KATAMPO2 NI 330 -75 1 1301BOGO GH 34.5 10.8 1 KATAR1 KATAMPO2 NI 330 -75 1 1061BCH 1261BCH GH 34.5 10.8 1 KATAR1 KATAMPO2 NI 330 -75 1 1061BCH 1261ECH GH 34.5 10.8 1 KATAR1 KATAMPO2 NI 330 -75 1 1061BCH 1261ECH GH 34.5 10.8 1 KATAR1 KATAMPO2 NI 330 -75 1 1061ECH 1261ECH GH 34.5 10.8 1 KATAR1 KATAMPO2 NI 330 -75 1 1061ECH 1261ECH GH 34.5 10.8 1 KATAR1 KATAMPO2 NI 330 -75 1 1061ECH 1261ECH 1261ECH GH 34.5 10.8 1 KATAR1 KATAMPO2 NI 330 -75 1 1061ECH 1261ECH GH 34.5 10.8 1 KATAR1 KATAMPO2 NI 330 -75 1 1061ECH 1261ECH 1261	11391K2L	11391K2L	GH	34.5	18	1	KADUR2	KADUNA02	NI	330	-30	1
1131KUMA 1131KUMA GH 34.5 10.8 2 GOMBR3 GOMBE_02 NI 330 -30 1 1132KUMA 1132KUMA GH 34.5 10.8 2 GOMBR4 GOMBE_02 NI 330 -30 1 1133KUM1 1133KUM1 GH 34.5 10.8 2 BENIRC2 BENIRCO2 NI 330 -30 1 1193KUM2 1133KUM2 GH 34.5 10.8 2 ALAOR1 ALAOJIO2 NI 330 -30 1 1092TARK 1092ATAR GH 34.5 10.8 1 INTBIRO2 BIRNINO2 NI 330 -30 1 1371MALL 371MALL GH 34.5 10.8 4 GOMBR1 GOMBE_02 NI 330 -50 1 1271SUNY 1271SUNY GH 34.5 10.8 1 GOMBR2 GOMBE_02 NI 330 -50 1 1202ASAW	1071BCCO	1071BCCO	GH	34.5	10.8	1	KADUR3	KADUNA02	NI	330	-30	1
1132KUMA 1132KUMA GH 34.5 10.8 2 GOMBR4 GOMBE_02 NI 330 -30 1 1133KUM1 1133KUM1 GH 34.5 10.8 2 BENIR2 BENINC02 NI 330 -30 1 1133KUM2 1133KUM2 GH 34.5 10.8 2 ALAORI ALAOJIO2 NI 330 -30 1 1092TARK 1092ATAR GH 34.5 10.8 1 INTBIRO2 BIRNINO2 NI 330 -30 -3 1 1371MALL 1371MALL GH 34.5 10.8 4 GOMBR1 GOMBE_02 NI 330 -50 1 1271SUNY 1271SUNY GH 34.5 10.8 4 GOMBR1 GOMBE_02 NI 330 -50 1 1202ASAW 1202ASAW GH 34.5 10.8 2 BENIR1 BENIRO2 NI 330 -75 1 1092BTA	1072C-CO	1072C-CO	GH	34.5	10.8		AJAOR1	AJAOKU02	NI	330	-30	
1133KUM1 1133KUM1 GH 34.5 10.8 2 BENIR2 BENIRCO2 NI 330 -30 1 1133KUM2 1133KUM2 GH 34.5 10.8 2 ALAOR1 ALAOJIO2 NI 330 -30 1 1092TARK 1092ATAR GH 34.5 10.8 1 INTBIRO2 BIRNINO2 NI 330 -33 4 1371MALL 1371MALL GH 34.5 10.8 4 GOMBR1 GOMBE_Q2 NI 330 -50 1 1271SUNY 1271SUNY GH 34.5 10.8 1 GOMBR2 GOMBE_Q2 NI 330 -50 1 1202ASAW 1202ASAW GH 34.5 10.8 1 GOMBR2 GOMBE_Q2 NI 330 -75 1 1092BTAR 1092BTAR GH 34.5 10.8 1 IKEWR1 IKEJAW02 NI 330 -75 1 1081TAKO	1131KUMA	1131KUMA	GH	34.5	10.8	2	GOMBR3	GOMBE_02	NI	330	-30	1
1133KUM2 1133KUM2 GH 34.5 10.8 2 ALAOR1 ALAOJI02 NI 330 -30 1 1092TARK 1092ATAR GH 34.5 10.8 1 INTBIR02 BIRNIN02 NI 330 -33 4 1371MALL 1371MALL GH 34.5 10.8 4 GOMBR1 GOMBE_02 NI 330 -50 1 1271SUNY 1271SUNY GH 34.5 10.8 1 GOMBR2 GOMBE_02 NI 330 -50 1 1202ASAW GGH 34.5 10.8 1 GOMBR2 GOMBE_02 NI 330 -50 1 1092BTAR 1092BTAR GH 34.5 10.8 1 IKEWR1 IKEJAWO2 NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 2 JEBBR1 JEBBA_02 NI 330 -75 1 1081TAKO 1081TAKO <td< td=""><td>1132KUMA</td><td>1132KUMA</td><td>GH</td><td>34.5</td><td>10.8</td><td></td><td>GOMBR4</td><td>GOMBE_02</td><td>NI</td><td>330</td><td>-30</td><td></td></td<>	1132KUMA	1132KUMA	GH	34.5	10.8		GOMBR4	GOMBE_02	NI	330	-30	
1092TARK 1092ATAR GH 34.5 10.8 1 INTBIR02 BIRNIN02 NI 330 -33 4 1371MALL 1371MALL GH 34.5 10.8 4 GOMBR1 GOMBE_02 NI 330 -50 1 1271SUNY 1271SUNY GH 34.5 10.8 1 GOMBR2 GOMBE_02 NI 330 -50 1 1202ASAW GH 34.5 10.8 2 BENIR1 BENINCO2 NI 330 -75 1 1092BTAR 1092BTAR GH 34.5 10.8 1 IKEVR1 IKEJAWO2 NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 2 JEBBR1 JEBBA_02 NI 330 -75 1 1082TAKO 1082TAKO GH 34.5 10.8 1 JEBBR2 JEBBA_02 NI 330 -75 1 1061BWIN GH 34.5 </td <td>1133KUM1</td> <td>1133KUM1</td> <td>GH</td> <td>34.5</td> <td>10.8</td> <td>2</td> <td>BENIR2</td> <td>BENINC02</td> <td>NI</td> <td>330</td> <td>-30</td> <td>1</td>	1133KUM1	1133KUM1	GH	34.5	10.8	2	BENIR2	BENINC02	NI	330	-30	1
1371MALL 1371MALL GH 34.5 10.8 4 GOMBR1 GOMBE_02 NI 330 -50 1 1271SUNY 1271SUNY GH 34.5 10.8 1 GOMBR2 GOMBE_02 NI 330 -50 1 1202ASAW 1202ASAW GH 34.5 10.8 2 BENIR1 BENIRC02 NI 330 -75 1 1092BTAR 1092BTAR GH 34.5 10.8 1 IKEWR1 IKEJAWO2 NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 2 JEBBR1 JEBBA_02 NI 330 -75 1 1082TAKO 1082TAKO GH 34.5 10.8 1 JEBBR_02 NI 330 -75 1 1061BWIN 1061BWIN GH 34.5 10.8 1 KADUR1 KADUR1 KADURAU 330 -75 1 1611BUIP GH 34.5 10.8 1 KANOR1 KANO_02 NI 330 -75 1	1133KUM2	1133KUM2	GH	34.5	10.8	2	ALAOR1	ALAOJI02	NI	330	-30	1
1271SUNY 1271SUNY GH 34.5 10.8 1 GOMBR2 GOMBE_02 NI 330 -50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1092TARK	1092ATAR	GH	34.5	10.8	1	INTBIR02	BIRNIN02	NI	330	-33	4
1202ASAW GH 34.5 10.8 2 BENIR1 BENIRCO2 NI 330 -75 1 1092BTAR 1092BTAR GH 34.5 10.8 1 IKEWR1 IKEJAWO2 NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 2 JEBBR1 JEBBA_02 NI 330 -75 1 1081TAKO 1082TAKO GH 34.5 10.8 1 JEBBR_02 NI 330 -75 1 1061BWIN GH 34.5 10.8 1 KADUR1 KADURAO NI 330 -75 1 1611BUIP GH 34.5 10.8 1 KANOR1 KANOR1 KANOR_02 NI 330 -75 1 1301BOGO 1301BOGO GH 34.5 10.8 1 KATAR1 KATAMPO2 NI 330 -75 1 1261TECH 1261TECH GH 34.5 10.8	1371MALL	1371MALL	GH	34.5	10.8	4	GOMBR1	GOMBE_02	NI	330	-50	1
1092BTAR 1092BTAR GH 34.5 10.8 1 IKEWR1 IKEJAW02 NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 2 JEBBR1 JEBBR_02 NI 330 -75 1 1082TAKO 1082TAKO GH 34.5 10.8 1 JEBBR_02 NI 330 -75 1 1061BWIN GH 34.5 10.8 1 KADUR1 KADUNA02 NI 330 -75 1 1611BUIP 611BUIP GH 34.5 10.8 1 KANOR1 KANO_02 NI 330 -75 1 1301BOGO 1301BOGO GH 34.5 10.8 1 KATAR1 KATAMPO2 NI 330 -75 1 1261TECH 1261TECH GH 34.5 10.8 1 KATAR1 KATAR1 KATSHDO6 NI 330 -75 1	1271SUNY	1271SUNY	GH	34.5	10.8	1	GOMBR2		NI	330	-50	1
1092BTAR 1092BTAR GH 34.5 10.8 1 IKEWR1 IKEJAW02 NI 330 -75 1 1081TAKO 1081TAKO GH 34.5 10.8 2 JEBBR1 JEBBA_02 NI 330 -75 1 1082TAKO 1082TAKO GH 34.5 10.8 1 JEBBR_02 NI 330 -75 1 1061BWIN GH 34.5 10.8 1 KADUR1 KADUNA02 NI 330 -75 1 1611BUIP 611BUIP GH 34.5 10.8 1 KANOR1 KANO_02 NI 330 -75 1 1301BOGO 1301BOGO GH 34.5 10.8 1 KATAR1 KATAMPO2 NI 330 -75 1 1261TECH 1261TECH GH 34.5 5.4 2 KATS4DC1 KATSINO6 NI 132 20 1												
1081TAKO 1081TAKO GH 34.5 10.8 2 JEBBR1 JEBBA_02 NI 330 -75 1 1082TAKO 1082TAKO GH 34.5 10.8 1 JEBBR_2 JEBBA_02 NI 330 -75 1 1061BWIN 1061BWIN GH 34.5 10.8 1 KADUR1 KADUNA02 NI 330 -75 1 1611BUIP GH 34.5 10.8 1 KANOR1 KANO_02 NI 330 -75 1 1301BOGO 1301BOGO GH 34.5 10.8 1 KATAR1 KATAMP02 NI 330 -75 1 1261TECH 1261TECH GH 34.5 5.4 2 KATS4DC1 KATSIN06 NI 132 20 1												
1082TAKO 1082TAKO GH 34.5 10.8 1 JEBBR2 JEBBA_02 NI 330 -75 1 1061BWIN 1061BWIN GH 34.5 10.8 1 KADUR1 KADUNA02 NI 330 -75 1 1611BUIP 1611BUIP GH 34.5 10.8 1 KANOR1 KANO_02 NI 330 -75 1 1301BOGO 301BOGO GH 34.5 10.8 1 KATAR1 KATAMP02 NI 330 -75 1 1261TECH 1261TECH GH 34.5 5.4 2 KATS4DC1 KATSIN06 NI 132 20 1												
1061BWIN 1061BWIN GH 34.5 10.8 1 KADUR1 KADUNA02 NI 330 -75 1 1611BUIP 1611BUIP GH 34.5 10.8 1 KANOR1 KANO_02 NI 330 -75 1 1301BOGO 301BOGO GH 34.5 10.8 1 KATAR1 KATAMP02 NI 330 -75 1 1261TECH 1261TECH GH 34.5 5.4 2 KATS4DC1 KATSIN06 NI 132 20 1												
1611BUIP 1611BUIP GH 34.5 10.8 1 KANOR1 KANO_02 NI 330 -75 1 1301BOGO 1301BOGO GH 34.5 10.8 1 KATAR1 KATAMP02 NI 330 -75 1 1261TECH 1261TECH GH 34.5 5.4 2 KATS4DC1 KATSIN06 NI 132 20 1												
1301BOGO 1301BOGO GH 34.5 10.8 1 KATAR1 KATAMP02 NI 330 -75 1 1261TECH 1261TECH GH 34.5 5.4 2 KATS4DC1 KATSIN06 NI 132 20 1												
1261TECH 1261TECH GH 34.5 5.4 2 KATS4DC1 KATSIN06 NI 132 20 1												

8.4. Ligne

Noeud 1	Pays	Zone	Noeud 2	Pays	Zone	Resistance	Reactance	Demi susceptance	Puissance
Nom	Nom	Nom	Nom	Nom	Nom	%pu	%pu	%pu	MVA
MBOUR 03	SE	SE	SENDOU03	SE	SE	2.200	9.600		93.5
THIONA08	SE	SE	TOBENE08	SE	SE	5.815	15.704		101.3
TOBENE03	SE	SE	TOUBA 03	SE	SE	1.652	4.397	4.042	233.8
KAOLAC03	SE	SE	TOUBA 03	SE	SE	1.814	4.830		250.0
BELAIR08	SE	SE	HANN_08	SE	SE	0.756	2.346	0.000	93.5
BELAIR08	SE	SE	HANN_08	SE	SE	0.618	2.716	2.149	93.5
BELAIR08	SE	SE	HANN_08	SE	SE	0.618	2.716	2.149	93.5
HANN_08	SE	SE	KOUNOU08	SE	SE	2.680	6.530	0.645	93.5
HANN_08	SE	SE	MBAO08	SE	SE	2.074	6.802	0.289	93.5
CAPEBI08	SE	SE	HANN_08	SE	SE	2.574	8.444	0.358	93.5
CAPEBI08	SE	SE	FICT1_08	SE	SE	1.100	4.900	0.200	86.5
CAPEBI08	SE	SE	KOUNOU08	SE	SE	1.180	5.185	0.209	93.5
CAPEBI08	SE	SE	MBAO08	SE	SE	0.501	1.638	0.821	93.5
CAPEBI08	SE	SE	SOCOCI08	SE	SE	1.502	3.111	2.463	93.5
KOUNOU08	SE	SE	SOCOCI08	SE	SE	2.680	4.926	3.265	93.5
KOUNOU03	SE	SE	TOBENE03	SE	SE	6.516	28.642	14.321	133.0
SOCOCI08	SE	SE	FICT2_08	SE	SE	2.900	8.900	0.400	101.3
MECKHE08	SE	SE	TOBENE08	SE	SE	5.399	16.748	0.687	93.5
DAGANA03	SE	SE	MATAM_03	SE	SE	6.276	15.295	35.820	233.8
DAGANA03	SE	SE	SAKAL_03	SE	SE	2.680	6.530	15.294	233.8
SAKAL_03	SE	SE	TOBENE03	SE	SE	1.052	2.802	4.439	233.8
KAOLAC03	SE	SE	TAMBAC03	SE	SE	2.640	15.990	24.240	250.0
KAOLAC03	SE	SE	SOMA03	SE	SE	1.190	7.210	10.930	250.0
HANN08	SE	SE	FICT1_08	SE	SE	1.100	4.900	0.200	86.5
SIBA08	SE	SE	FICT1_08	SE	SE	1.100	4.900	0.200	86.5
THIONA08	SE	SE	FICT2_08	SE	SE	2.900	8.900	0.400	101.3
SOMETA08	SE	SE	FICT2_08	SE	SE	2.900	8.900	0.400	101.3
KAOLAC03	SE	SE	MBOUR_03	SE	SE	4.400	19.240	0.840	93.5
TANAF_03	SE	SE	ZIGUIN03	SE	SE	1.200	7.300	11.100	250.0
BELAIR08	SE	SE	UNIVER08	SE	SE	0.800	3.500	0.200	132.9
UNIVER08	SE	SE	AEROPO08	SE	SE	1.400	6.200	0.300	132.9
AEROPO08	SE	SE	PATTED08	SE	SE	1.000	4.400	0.200	132.9
PATTED08	SE	SE	CAPEBI08	SE	SE	1.800	7.900	0.300	132.9
PATTED08	SE	SE	HANN08	SE	SE	0.200	1.000	0.000	132.9
TAIBA_08	SE	SE	TOBENE08	SE	SE	1.460	6.420	0.280	132.9
TANAF_03	SE	SE	MANSOA03	SE	SE	0.740	4.480	0.860	250.0
SENDOU03	SE	SE	KOUNOU03	SE	SE	0.500	2.200	0.100	93.5
SENDOU03	SE	SE	KOUNOU03	SE	SE	0.500	2.200	0.100	93.5
KOUNOU08	SE	SE	HANN08	SE	SE	2.680	6.530	0.645	93.5
SENDOU03	SE	SE	KOUNOU03	SE	SE	0.500	2.200	0.100	93.5
SENDOU03	SE	SE	KOUNOU03	SE	SE	0.500	2.200	0.100	93.5
SENDOU03	SE	SE	KOUNOU03	SE	SE	0.500	2.200		93.5
KOUNOU08	SE	SE	HANN08	SE	SE	2.680	6.530		93.5
TAMBAC03	SE	SE	KAYES_03	SE	SE	2.640	15.990		250.0
SOMA03	GA	GA	TANAF_03	GA	GA	0.980	5.900		250.0
SOMA03	GA	GA	BRIKAM03	GA	GA	1.560	9.460		250.0
BRIKAM03	GA	GA	SOMA03	GA	GA	1.560	9.460		250.0
BISSAU03	GB	GB	MANSOA03	GB	GB	0.350	2.150		250.0
BAMBAD03	GB	GB	MANSOA03	GB	GB	0.550	3.310		250.0
BAMBAD03	GB	GB	SALTHI03	GB	GB	0.560	3.410		250.0
BISSAU03	GB	GB	MANSOA03	GB	GB	0.350	2.150		250.0
SALTHI03	GB	GB	BOKE_03	GB	GB	0.980	5.920		250.0
BAMBAD03	GB	GB	SALTHI03	GB	GB	0.560	3.410		250.0
BAMBAD03	GB	GB	MANSOA03	GB	GB	0.550	3.310		250.0
GRCHUT07	GU	GU	KINDIA07	GU	GU	3.668	10.552		76.0
KINDIA07	GU	GU	GRCHUT07	GU	GU	3.668	10.552		76.0
LINSAN07	GU	GU	KINDIA07	GU	GU	7.795	22.423		76.0
LINSAN07	GU	GU	KINDIA07	GU	GU	7.795	22.423		76.0
YESSOU_D	GU	GU	GRCHUT_D	GU	GU	19.830	40.890		32.0
MATOTO_D	GU	GU	SONFON_D	GU	GU	5.550	11.440		32.0
SONFON D	GU	GU	MATOTO_D	GU	GU	5.550	11.440	0.057	32.0

Noeud 1	Pays	Zone	Noeud 2	Pays	Zone	Resistance	Reactance	Demi susceptance	Puissance
Nom	Nom	Nom	Nom	Nom	Nom	%pu	%pu	%pu	MVA
SONFON_D	GU	GU	MATOTO_D	GU	GU	5.55	11.44	0.057	32
SONFON_D	GU	GU	MATOTO_D	GU	GU	5.55	11.44	0.057	32
SONFON_D	GU	GU	MANEAH_D	GU	GU	7.05	14.54	0.07	32
MANEAH_D	GU	GU	SONFON_D	GU	GU	7.05	14.54	0.07	32
MANEAH_D	GU	GU	SONFON_D	GU	GU	7.05	14.54	0.07	32
MANEAH_D	GU	GU	SONFON_D	GU	GU	7.05	14.54	0.07	32
MANEAH_D	GU	GU	YESSOU_D	GU	GU	2.92	6.02	0.03	32
GRCHUT07	GU	GU	GARAFI07	GU	GU	17.25455	49.63636	2.360994	76
MATOTO07	GU	GU	GRCHUT07	GU	GU	10.56579	21.78512	1.088039	58
GRCHUT07	GU	GU	MATOTO07	GU	GU	8.265289	23.77686	1.130966	76
GRCHUT07	GU	GU	MATOTO07	GU	GU	8.265289	23.77686		76
GRCHUT07	GU	GU	DONKEA07	GU	GU	2.084298	4.297521	0.214636	58
DONKEA_D	GU	GU	BANEAH_D	GU	GU	0.56	0.28	0.01	15
LINSAN07	GU	GU	GARAFI07	GU	GU	5.791736	16.66116		76
LINSAN07	GU	GU	GARAFI07	GU	GU	5.791736	16.66116	0.792502	76
LINSAN07	GU	GU	MAMOU_07	GU	GU	5.18843	14.92562	0.709949	76
BOKE_03	GU	GU	KALETA03	GU	GU	1.31	7.92	12.01	250
KALETA03	GU	GU	LINSAN03	GU	GU	1.13	6.86	10.4	250
LINSAN03	GU	GU	LABE03	GU	GU	1.36	8.22	12.47	250
LABE03	GU	GU	MALI03	GU	GU	0.82	4.96		250
MALI_03	GU	GU	SAMBAG03	GU	GU	0.45	2.75	4.17	250
SAMBAG03	GU	GU	TAMBAC03	GU	GU	2.64	15.96		250
SIGUIR03	GU	GU	FOMI_03	GU	GU	1.31	7.95	12.05	250
FOMI03	GU	GU	KANKAN03	GU	GU	0.71	4.28	6.49	250
KANKAN03	GU	GU	BEYLA_03	GU	GU	2.53	15.28		250
BEYLA_03	GU	GU	NZEREK03	GU	GU	1.41	8.56	12.98	250
FOMI_03	GU	GU	KOROUS03	GU	GU	0.61	3.67 11	5.56	250 250
KOROUS03 DABOLA03	GU	GU	DABOLA03 LINSAN03	GU	GU	1.82 1.92	11.61	16.68 17.61	250
KALETA03	GU	GU	LINSANO3	GU	GU	1.13	6.86		250
BOKE 03	GU	GU	KALETA03	GU	GU	1.13	7.92	12.01	250
BOKE 03	GU	GU	SALTHIO3	GU	GU	0.98	5.92	8.97	250
FOMI 03	GU	GU	2371BUND	GU	GU	5	3.32		250
KALETA03	GU	GU	AMARYA03	GU	GU	1.31	7.92	12.01	250
AMARYA03	GU	GU	MATOTO03	GU	GU	1.31	7.92	12.01	250
LINSAN03	GU	GU	DABOLA03	GU	GU	1.92	11.61	17.61	250
DABOLA03	GU	GU	KOROUS03	GU	GU	1.82	11.01	16.68	250
KOROUS03	GU	GU	FOMI 03	GU	GU	0.61	3.67	5.56	250
LINSAN03	GU	GU	KOUKOU03	GU	GU	1.66	10.2	15.45	250
KOUKOU03	GU	GU	BOUREY03	GU	GU	0.83	5.1	7.72	250
BOUREY03	GU	GU	MANANT03	GU	GU	2.5	15.3	23.2	250
BOUREY03	GU	GU	MANANT03	GU	GU	2.5	15.3	23.2	250
BOUREY03	GU	GU	KOUKOU03	GU	GU	0.83	5.1		250
KOUKOU03	GU	GU	LINSAN03	GU	GU	1.66	10.2	15.45	250
KAYES_03	MA	MA	MANANT03	MA	MA	6.676	16.269		233.8
KAYES_03	MA	MA	MATAM_03	MA	MA	6.018	14.665		233.8
MANANT03	MA	MA	TKITA_03	MA	MA	1.99	12.04		250
TKITA_03	MA	MA	KODIAL03	MA	MA	1.1	6.66		250
FANA_05	MA	MA	SEGOU_05	MA	MA	7.85	21.01		100
KALABA05	MA	MA	SIRAKO05	MA	MA	1.22	3.29		100
KODIAL05	MA	MA	LAFIA_05	MA	MA	0.58	1.55		100
KODIAL05	MA	MA	KALABA05	MA	MA	0.36	0.97		100
SIRAKO05	MA	MA	SELING05	MA	MA	8.6	20.45		100
SIRAKO05	MA	MA	BALING05	MA	MA	0.9	2.13		100
SIRAKO05	MA	MA	BALING05	MA	MA	0.9	2.13		100
SIRAKO05	MA	MA	FANA05	MA	MA	8.6	21.65		100
SIKASS03	MA	MA	KOUTIA03	MA	MA	3.291	8.02	18.78	250
KOUTIA03	MA	MA	SEGOU_03	MA	MA	3.761	9.166	21.47	250
SIKASS03	MA	MA	2060FERK	MA	MA	1.646	4.01	9.391	250
SIKASS03	MA	MA	OULESS03	MA	MA	6.122	14.89	34.88	250
OULESS03	MA	MA	KODIAL03	MA	MA	1.41	3.437	8.049	250
SIKASS03	MA	MA	4KODE225	MA	MA	3.902	9.509	22.27	250
SIRAKO05	MA	MA	KENIE_05	MA	MA	2.2	5.8	0.9	100
KODIAL03	MA	MA	SELING03	MA	MA	1.52	9.17	13.9	250
SELING03	MA	MA	SIGUIR03	MA	MA	1.52	9.17	13.9	250
BADOUM03	MA	MA	MANANT03	MA	MA	1.65	4.05	9.5	233.8

Noeud 1	Pays	Zone	Noeud 2	Pays	Zone	Resistance	Reactance	Demi susceptance	Puissance
Nom	Nom	Nom	Nom	Nom	Nom	%pu	%pu	%pu	MVA
KODIAL05	MA	MA	LAFIA_05	MA	MA	0.58	1.55	0.24	100
KODIAL05	MA	MA	KALABA05	MA	MA	0.36	0.97	0.15	100
MANANT03	MA	MA	TKITA_03	MA	MA	1.99	12.04	18.26	250
TKITA_03	MA	MA	KODIAL03	MA	MA	1.1	6.66	10.1	250
SELING05	MA	MA	SIRAKO05	MA	MA	8.6	20.45	3.64	100
YIBEN_03	SL	SL	KAMAKW03	SL	SL	0.5954	3.664	5.5649	250
KAMAKW03	SL	SL	LINSAN03	SL	SL	1.5679	9.648	14.6542	250
BIKONG03	SL	SL	BUMBUN03	SL	SL	1.4092	8.671	13.1702	250
BUMBUN03	SL	SL	YIBEN_03	SL	SL	0.7542	4.641	7.0489	250
KENEMA03	SL	SL	BIKONG03	SL	SL	0.9427	5.801	8.8111	250
BUMBUN04	SL	SL	FRTOWN04	SL	SL	6.7426	31.1195	7.6502	244
BUMBUN04	SL	SL	FRTOWN04	SL	SL	6.7426	31.1195	7.6502	244
MANO03	LI	LI	KENEMA03	LI	LI	1.1511	7.084	10.7588	250
YEKEPA03	LI	LI	BUCHAN03	LI	LI	2.1336	13.12	19.9408	250
BUCHAN03	LI	LI	MONROV03	LI	LI	1.0023	6.167	9.3676	250
YEKEPA03	LI	LI	NZEREK03	LI	LI	0.3969	2.442	3.7099	250
MONROV03	LI	LI	MANO03	LI	LI	1.0023	6.167	9.3676	250
STPAUL03	LI	LI	MONROV03	LI	LI	1.0023	6.167	9.3676	250
BUCHAN03	LI	LI	TIBOTO03	LI	LI	5.5	34	51.6	250
YEKEPA03	LI	LI	2100MAN-	LI	LI	1.5878	9.771	14.8397	250
YEKEPA03	LI	LI	BUCHAN03	LI	LI	2.1336	13.12	19.9408	250
MONROV03	LI	LI	BUCHAN03	LI	LI	1.0023	6.167	9.3676	250
2100MAN-	CI	CI	YEKEPA03	CI	CI	1.5878	9.771	14.8397	250
2010ABOB	CI	CI	1809ELUB	CI	CI	1.69	11.62	10.41	327
2030TAAB	CI	CI	2010ABOB	CI	CI	3.146	14.104	11.896	246
2030TAAB	CI	CI	2010ABOB	CI	CI	1.975	13.566	12.302	327
2010ABOB	CI	CI	2500AZIT	CI	CI	0.194	1.333	1.208	327
2010ABOB	CI	CI	2500AZIT	CI	CI	0.194	1.333	1.208	327
2011ABOB	CI	CI	2160BIAN	CI	CI	1.056	2.593	0.059	72
2011ABOB	CI	CI	2160BIAN	CI	CI	1.0556	2.593	0.059	72
2150PLAT	CI	CI	2240TREI	CI	CI	0.235	0.563	1.102	75
2150PLAT	CI	CI	2240TREI	CI	CI	0.235	0.563	1.102	75
2240TREI	CI	CI	2021VRID	CI	CI	0.75	3.37	0.07	100
2021VRID	CI	CI	2220BIAS	CI	CI	1.404	3.94	0.093	72
2021VRID	CI	CI	2220BIAS	CI	CI	1.422	3.99	0.093	72
2220BIAS	CI	CI	2210RIVI	CI	CI	2.3222	5.7037	0.1262	72
2220BIAS	CI	CI	2210RIVI	CI	CI	2.3222	5.704	0.13	72
2360KORH	CI	CI	2061FERK	CI	CI	10.197	25.044	0.572	72
2370BUND	CI	CI	2360KORH	CI	CI	18.4	51.622	1.225	75
23800DIE	CI	CI	2370BUND	CI	CI	21.884	61.398	1.457	75
23800DIE	CI	CI	2111LABO	CI	CI	21.724	60.949	1.446	75
2111LABO	CI	CI	2390SEGU	CI	CI	14.578	40.899	0.97	75
2060FERK	CI	CI	2050BOUA	CI	CI	2.716			327
2101MAN-	CI	CI	2400DANA	CI	CI	13.653	38.305		75
2340BOUA	CI	CI	2350MARA	CI	CI	14.578	40.899		75
2100MAN-	CI	CI	2090BUYO	CI	CI	2.244			327
2090BUYO	CI	CI	2070SOUB	CI	CI	0.955	6.56		327
2091BUYO	CI	CI	2410DALO	CI	CI	19.9111			75
2410DALO	CI	CI	2041KOSS	CI	CI	19.662	55.163		75
2320GAGN	CI	CI	2041KOSS	CI	CI	21.333	59.852		73
2340BOUA	CI	CI	2300SERE	CI	CI	23.467	65.83701		75
2340BOUA	CI	CI	2051BOUA	CI	CI	4.693	13.167		75
2051BOUA	CI	CI	2031BOOA 2041KOSS	CI	CI	24.341			73
2330ZUEN	CI	CI	2041KOSS	CI	CI	16.48	46.236		75
2050BOUA	CI	CI	2041KOSS 2040KOSS	CI	CI	1.276			327
2050BO0A 2041KOSS	CI	CI	2040KOSS 2250YAMO	CI	CI	9.476			72
					CI				
2250YAMO	CI	CI	2260DIMB	CI		11.982	33.617		72
2260DIMB	CI	CI	2270ATAK	CI	CI	18.471	51.822		75 75
2270ATAK	CI	CI	2280ABEN	CI	CI	7.11	19.951	0.473	75 75
2290AGNE	CI	CI	2280ABEN	CI	CI	9.422	26.435		75
2040KOSS	CI	CI	2030TAAB	CI	CI	2.295	10.287		246
2320GAGN	CI	CI	2310DIVO	CI	CI	14.4	40.4		75
2031TAAB	CI	CI	2260DIMB	CI	CI	12.836			75
2070SOUB	CI	CI	2030TAAB	CI	CI	2.277	15.641		327
2500AZIT	CI	CI	2020VRID	CI	CI	0.142	0.974		330
2081PEDR	CI	CI	20FAYE90	CI	CI	6.756	18.953	0.45	75

Noeud 1	Pays	Zone	Noeud 2	Pays	Zone	Resistance	Reactance	Demi susceptance	Puissance
Nom	Nom	Nom	Nom	Nom	Nom	%pu	%pu	%pu	MVA
2031TAAB	CI	CI	2120AGBO	CI	CI	21.156	59.353	1.408	75
2011ABOB	CI	CI	2140BONG	CI	CI	12.2444	30.0741	0.6656	75
2140BONG	CI	CI	2170AYAM	CI	CI	13.87	34.067	0.777	72
2170AYAM	CI	CI	2180AYAM	CI	CI	0.8444	2.074	0.047	72
2180AYAM	CI	CI	2190ABRO	CI	CI	12.456	30.593	0.698	72
2011ABOB	CI	CI	2150PLAT	CI	CI	0.9720001	4.3556	0.0962	75
2150PLAT	CI	CI	2160BIAN	CI	CI	0.148	0.356	0.696	75
2160BIAN	CI	CI	2210RIVI	CI	CI	2.174	5.341	0.122	72
2200BASS	CI	CI	2190ABRO	CI	CI	5.278	12.963	0.296	72
2210RIVI	CI	CI	2200BASS	CI	CI	6.038	14.83	0.338	72
200SIR90	CI	CI	2021VRID	CI	CI	1.24	3.63	0.08	75
2111LABO	CI	CI	2101MAN-	CI	CI	11.0341	78.8148	1.7358	132
2071SUBR	CI	CI	2081PEDR	CI	CI	8.493299	60.6667	1.3361	132
2209RIVI	CI	CI	2020VRID	CI	CI	0.228	1.564	1.418	327
2240TREI	CI	CI	2021VRID	CI	CI	0.75	3.37	0.07	100
2100MAN-	CI	CI	2110LABO	CI	CI	1.765	12.13	10.999	246
2070SOUB	CI	CI	2080S-PE	CI	CI	1.359	9.337	8.467	327
2000HIRE	CI	CI	2031TAAB	CI	CI	3.91	11.4	0.25	75
2310DIVO	CI	CI	2000HIRE	CI	CI	7.44	21.72	0.48	75
2010ABOB	CI	CI	2229YOPO	CI	CI	0.151	1.037	0.941	327
2229YOPO	CI	CI	2500AZIT	CI	CI	0.044	0.303	0.275	327
2011ABOB	CI	CI	2130DABO	CI	CI	10.3111	30.0741	0.6656	75
2120AGBO	CI	CI	2231YOPO	CI	CI	9.78	27.43	0.65	75
2231YOPO	CI	CI	2011ABOB	CI	CI	2.31	6.48	0.154	75
2230YOPO	CI	CI	2021VRID	CI	CI	3.314	8.141	0.186	72
2011ABOB	CI	CI	2230YOPO	CI	CI	2.913	7.156	0.163	72
2060FERK	CI	CI	4KODE225	CI	CI	2.576	17.7	16.05	327
2110LABO	CI	CI	2371BUND	CI	CI	2.716	18.658	16.719	327
2371BUND	CI	CI	2060FERK	CI	CI	1.975	13.566		327
2340BOUA	CI	CI	2290AGNE	CI	CI	55	150		72
2500AZIT	CI	CI	2209RIVI	CI	CI	0.37	2.53		327
2030TAAB	CI	CI	2070SOUB	CI	CI	2.277	15.641		327
2229YOPO	CI	CI	2010ABOB	CI	CI	0.151	1.037	0.941	327
2500AZIT	CI	CI	2229YOPO	CI	CI	0.044	0.303		327
2040KOSS	CI	CI	2030TAAB	CI	CI	2.295	10.287	8.677	246
2030TAAB	CI	CI	2010ABOB	CI	CI	3.146	14.104		246
2021VRID	CI	CI	2230YOPO	CI	CI	3.314	8.141		72
TIBOTO03	CI	CI	2080S-PE	CI	CI	1.4	8.5		250
2021VRID	CI	CI	2220BIAS	CI	CI	1.422	3.99		72
2011ABOB	CI	CI	2230YOPO	CI	CI	2.913	7.156		72
2140BONG	CI	CI	2011ABOB	CI	CI	12.2444	30.0741	0.6656	75
4BOB1_33	BU	BU	4BOB2_33	BU	BU	7.438	12.121		17
4BOB1_33	BU	BU	4BOB2_33	BU	BU	7.438	12.121		17
4KODEN33	BU	BU	4BOB2_33	BU	BU	8.356	13.59		17
4KODEN33	BU	BU	4BOB2_33	BU	BU	8.448	13.774		17
4KODEN33	BU	BU	4BOB2_33	BU	BU	8.448	13.774		17
4KOUA_33	BU	BU	4BOB1_33	BU	BU	15.611	25.528		17
4KOUA_33	BU	BU	4KODEN33	BU	BU	24.702	40.312		17
4BAGR132	BU	BU	4ZANO132	BU	BU	3.03	7.438		110
4KOMP132	BU	BU	4ZANO132	BU	BU	13.258	32.541		110
4ZANO132	BU	BU	4PTDO132	BU	BU	13.545	33.242		110
4_PA_225	BU	BU	4KODE225	BU	BU	1.701	10.509		327
4_PA_225	BU	BU	4ZAGT225	BU	BU	2.588	15.995		327
4KOMSI33	BU	BU	40UAG333	BU	BU	14.417	23.508		17
4KOSSO33	BU	BU	40UAG133	BU	BU	14.784	24.242		17
4KOSSO33	BU	BU	40UAG233	BU	BU	23.875	39.027		17
40UAG333	BU	BU	4PTDOI33	BU	BU	10.285	16.804		17
40UAG133	BU	BU	40UAG233	BU	BU	11.111	18.182		17
4PTDOI33	BU	BU	40UAG233	BU	BU	28.375	46.373		17
4PTDOI33	BU	BU	4KOSSO33	BU	BU	26.354	42.975		17
4PTDOI33	BU	BU	4ZAGTO33	BU	BU	56.107	117.264		17
4ZAGTO33	BU	BU	4KOMSI33	BU	BU	30.854	50.413		17
40UAG190	BU	BU	40UAG290	BU	BU	0.272	0.728		75 75
40UAG190	BU	BU	4_PC_090	BU	BU	0.21	0.568		75
40UAG190	BU	BU	4_PC_090	BU	BU	0.21	0.568		75 72
4_PC_090	BU	BU	4KOSSO90	BU	BU	0.741	2.173	0.0509	72

QUAGACIO QUA QUAGTIZES QUA QUAGACIO QUAGACI	Noeud 1	Pays	Zone	Noeud 2	Pays	Zone	Resistance	Reactance	Demi susceptance	Puissance
«ΣΑGTORO BU BU BU 400AG299 BU BU 2.667 7.802 0.18 72 OUAGAE08 BU BU BU 2.24 1.488 1.418 327 OUAGAE08 BU BU BU 2.244 7.735 0.178 7.2 PATDOIAS BU BU WAKOSSO90 BU BU 2.644 7.735 0.178 7.2 4ZAGTO33 BU BU WAKOSSO90 BU BU 2.644 7.735 0.178 7.2 4ZAGTO33 BU BU WAKOMS33 BU BU 56.107 111.7264 0.0068 17 4WTODI33 BU BU WAKOMS33 BU BU 10.284 50.413 0.0026 17 4WTODI33 BU BU WAKOMS33 BU BU 10.285 16.804 0.0022 1.25 11 1010AKOS GH GH 10.0040333 BU BU 10.285 16.80 0.012 2.133 0.012 11 10.1040000	Nom	Nom	Nom	Nom	Nom	Nom	%pu	%pu	%pu	MVA
QUAGACIO QUA QUAGTIZES QUA QUAGACIO QUAGACI	4_PC_090	BU	BU	4KOSSO90	BU	BU	0.741	2.173	0.0509	72
QUAGAGE08 QU	4ZAGTO90	BU	BU	40UAG290	BU	BU	2.667	7.802	0.18	72
OUAGAER BU	OUAGAE03	BU	BU	4ZAGT225	BU	BU	0.254	1.468	1.418	327
PATDOIRS BU BU QUAGAEOS BU BU Z.644 7.735 0.178 72.424GT033 BU BU 4PTD0133 BU BU 50.056.107 117,264 0.0068 17.424GT033 BU BU 4PTD0133 BU BU 50.056.107 117,264 0.0068 17.424GT033 BU BU 40UAG333 BU BU 19.0 14.417 23.508 0.012 17.44T0D133 BU BU 40UAG333 BU BU 14.417 23.508 0.002 17.44T0D133 BU BU 40UAG333 BU BU 10.285 16.804 0.0085 17.0100ACOS GH GH 1050ACHI GH GH 2.23 16.804 0.0085 17.0100ACOS GH GH 1050ACHI GH GH 2.21 10.29 2.563 213.08 10100ACOS GH GH 1050ACHI GH GH 2.21 10.29 2.563 213.08 10100ACOS GH GH 1020VOLT GH GH GH 2.12 10.29 2.563 213.08 10100ACOS GH GH 1100VOLT GH GH 2.12 10.29 2.563 213.08 10100ACOS GH GH 1100VOLT GH GH 2.12 10.29 2.563 213.08 10100ACOS GH GH 1100VACW GH GH 2.22 10.29 2.563 213.08 10100ACOS GH GH 1100VACW GH GH 2.276 10.427 4.725 364 1139K2BS GH GH 1130KUMA GH GH GH 2.276 10.427 4.725 364 1139K2BS GH GH 1130KUMA GH GH GH 2.276 10.427 4.725 364 1100ACOS GH GH 1150TACO GH GH 5.75 6.84 3.09 364 10100ACOS GH GH 1150TACO GH GH 5.75 6.84 3.09 364 10100ACOS GH GH 1150TACO GH GH 5.75 6.84 3.09 364 10100ACOS GH GH 1170KPON GH GH GH 5.51 2.45 0.61 213.08 10100ACOS GH GH 1170KPON GH GH GH 0.51 2.45 0.61 213.08 10100ACOS GH GH 1170KPON GH GH GH 0.51 2.45 0.61 213.08 10100ACOS GH GH 1170KPON GH GH GH 0.51 2.45 0.61 213.08 10100ACOS GH GH 1170KPON GH GH GH 0.077 3.81 0.015 213.08 11000ACOS GH GH 1170KPON GH GH GH 0.078 3.07 10.162 364 11000ACOS GH GH 1170KPON GH GH GH 0.078 3.07 10.162 364 11000ACOS GH GH 1170KPON GH GH GH 0.078 3.07 10.162 364 11000ACOS GH GH 1170KPON GH GH GH 0.078 3.07 10.162 364 11000ACOS GH GH 1170KPON GH GH GH 0.078 3.07 10.162 364 11000ACOS GH GH 1170KPON GH GH GH 0.078 3.07 10.162 364 11000ACOS GH GH 1170KPON GH GH GH 0.078 3.07 10.162 364 11000ACOS GH GH GH 1000ACOS GH GH 1170KPON GH GH GH 0.078 3.07 10.162 364 11000ACOS GH GH 1170KPON GH GH GH 0.078 3.07 10.162 364 11000ACOS GH GH GH 1000ACOS G	OUAGAE08	BU	BU	4KOSSO90	BU	BU	2.644	7.735	0.178	72
42AGTO33 BU BU BU PDD033 BU BU 30.854 50.413 0.0068 17 4ZAGTO33 BU BU 40.046333 BU BU 11.417 23.508 0.012 17 4RTOKI33 BU BU 40.046333 BU BU 11.42 23.56 0.0085 17 1010AKOS GH GH GH HO GH GH 12.02 2.563 213.08 1010AKOS GH GH 1020VOLT GH GH CH GH 2.12 10.29 2.563 213.08 1010AKOS GH GH 1140NKAW GH GH 2.12 10.29 2.563 213.08 1199K2BS GH GH 1140KAW GH GH 2.476 10.427 4.725 364 1190KOS GH GH 1120KWAW GH GH 1120KWAW GH GH 12.245 0.61 213.08	OUAGAE08	BU	BU	4KOSSO90	BU	BU	2.644	7.735	0.178	72
42AGTOTA33 BU BU AKOMSI333 BU BU BU BU AUCAGAS33 BU BU 14417 23.508 0.012 171 4PTDOI33 BU BU 4DUAGAS33 BU BU 10.285 16.604 0.0085 177 1010AKOS GH GH 1050ACH GH GH 10.29 2.563 213.08 1010AKOS GH GH 1020VOLT GH GH 1.1029 2.563 213.08 1010AKOS GH GH 1140NKAW GH GH GH 1.102VUCT GH GH 1.102VUCT 4.725 364 213.08 1.113WCBS GH GH	PATDOI08	BU	BU	OUAGAE08	BU	BU	2.644	7.735	0.178	72
## ## ## ## ## ## ## ## ## ## ## ## ##	4ZAGTO33	BU	BU	4PTDOI33	BU	BU	56.107	117.264	0.0068	17
## PTOLOGA SP	4ZAGTO33	BU	BU	4KOMSI33	BU	BU	30.854	50.413	0.0256	17
1010AKOS	4KOMSI33	BU	BU	40UAG333	BU	BU	14.417	23.508	0.012	17
1910AKOS GH GH 1020VOLT GH GH 2.12 10.29 2.563 213.08 1010AKOS GH GH 1020VOLT GH GH 2.12 10.29 2.563 213.08 1010AKOS GH GH 1020VOLT GH GH 2.12 10.29 2.563 213.08 1010AKOS GH GH 1120KUMA GH GH 3.226 13.887 6.157 366.3 1139K285 GH GH 1130KUMA GH GH 0.388 1.675 0.759 366.1 1139K285 GH GH 1130KUMA GH GH 0.388 1.675 0.759 366.1 1139K285 GH GH 1150TAFO GH GH 0.572 9.74 2.205 16.99 1010AKOS GH GH 1150TAFO GH GH 0.515 2.45 0.61 213.08 1010AKOS GH GH 1170KPON GH GH 0.515 2.45 0.61 213.08 1010AKOS GH GH 1170KPON GH GH 0.515 2.45 0.61 213.08 1010AKOS GH GH 1190KPON GH GH 0.77 3.81 0.915 213.08 1010AKOS GH GH 1190KPON GH GH 0.77 3.81 0.915 213.08 1010AKOS GH GH 1390KPON GH GH 0.085 0.357 0.152 364 1010AKOS GH GH 1040TEMA GH GH 0.085 0.357 0.162 364 1020VOLT GH GH 1040TEMA GH GH 0.085 0.357 0.162 364 1020VOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1370MALL GH GH 0.388 1.675 0.759 364 1020VOLT GH GH 1370MALL GH GH 0.385 1.675 0.759 364 1070V-CO GH GH 1370MALL GH GH 0.388 1.675 0.759 364 1070V-CO GH GH 1370MALL GH GH 0.388 1.675 0.759 364 1070V-CO GH GH 1370MALL GH GH 0.388 1.675 0.759 364 1070V-CO GH GH 1370MALL GH GH 0.388 1.675 0.759 364 1070V-CO GH GH 1370MALL GH GH 0.388 1.675 0.759 364 1070V-CO GH GH 1370MALL GH GH 0.388 1.675 0.759 364 1070V-CO GH GH 1370MALL GH GH 0.398 1.675 0.759 364 1070V-CO GH GH	4PTDOI33	BU	BU	40UAG333	BU	BU	10.285	16.804	0.0085	17
1010AKOS GH	1010AKOS	GH	GH	1050ACHI	GH	GH	2.93	14.2	3.54	213.08
1010AKOS GH	1010AKOS	GH	GH	1020VOLT	GH	GH	2.12	10.29	2.563	213.08
1910AKOS GH	1010AKOS	GH	GH	1020VOLT	GH	GH	2.12	10.29	2.563	213.08
1139K2BS GH GH 1140NKAW CH GH GH 2.476 10.427 4.725 364 1010AKOS GH GH 1150TAFO GH GH 0.398 1.675 0.759 364 1010AKOS GH GH 1150TAFO GH GH 1.57 6.84 3.09 364 1010AKOS GH GH 1170KPON GH GH 0.51 2.45 0.61 213.08 1010AKOS GH GH 1170KPON GH GH 0.51 2.45 0.61 213.08 1010AKOS GH GH 1170KPON GH GH 0.51 2.45 0.61 213.08 1010AKOS GH GH 1190KPON GH GH 0.77 3.81 0.915 213.08 1010AKOS GH GH 1390KPON GH GH 0.77 3.81 0.915 213.08 1010AKOS GH GH 1390KPON GH GH 0.77 3.81 0.915 213.08 1010AKOS GH GH 1390KPON GH GH GH 0.77 3.81 0.915 213.08 1010AKOS GH GH 1392AFT GH GH 8.837 20.254 4.4135 128.12 1010AKOS GH GH 1304TEMA GH GH 0.085 0.357 0.162 364 1020VOLT GH GH 1040TEMA GH GH 0.085 0.357 0.162 364 1020VOLT GH GH 1140KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1370KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1370KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1370KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1370KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1370KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1370KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1370KALL GH GH GH 0.398 1.675 0.759 364 1370MALL GH GH 1060WINN GH GH GH 1.912 6.713 1.758 1.690 1050ACHI GH GH 1370MALL GH GH GH 0.398 1.675 0.759 364 1050ACHI GH GH 1320ABOA GH GH CH 1.912 6.713 1.578 1.690 1050ACHI GH GH 1320ABOA GH GH GH 2.361 9.081 2.135 1.50 1070C-CO GH GH 1320ABOA GH GH GH 2.361 9.081 2.135 1.50 1070C-CO GH GH 1320ABOA GH GH GH 2.361 9.081 2.135 1.50 1070C-CO GH GH 1320ABOA GH GH GH 2.29 8.2 1.855 1.699 1080TAKO GH GH 1320ABOA GH GH GH 2.29 8.2 1.855 1.699 1080TAKO GH GH 1320ABOA GH GH GH 2.29 8.2 1.855 1.699 1080TAKO GH GH 1320ABOA GH GH GH 2.29 1.284 5.815 364 1090TAKK GH GH 1320ABOA GH GH GH 2.29 1.284 5.815 364 1090TAKK GH GH 1320ABOA GH GH GH 2.29 1.284 5.815 364 1090TAKK GH GH 1300BOGO GH GH GH 2.29 1.284 5.815 364 1090TAKK GH GH 1300BOGO GH GH GH 2.29 1.284 5.815 364 1090TAKK GH GH 1300BOGO GH GH GH 2.29 1.284 5.815 364 1100UNK GH GH 1300BOGO GH GH GH 2.29 1.284 5.815	1010AKOS	GH	GH	1020VOLT	GH	GH	2.12	10.29	2.563	213.08
1139NZBS GH CH 1130KUMA GH GH GH 0.388 1.675 0.759 364 1010AKOS GH CH 1150TAFO GH GH CH 2.72 9.74 2.205 169.9 1010AKOS GH GH L150TAFO GH GH CH 1.57 6.84 3.0.9 364 1010AKOS GH GH L170KPON GH GH 0.51 2.45 0.61 213.08 1010AKOS GH GH L170KPON GH GH O.51 2.45 0.61 213.08 1010AKOS GH GH L170KPON GH GH O.51 2.45 0.61 213.08 1010AKOS GH GH L170KPON GH GH O.51 2.45 0.61 213.08 1010AKOS GH GH 120AKOS GH GH 140ATEMA GH GH 0.085 0.357 0.162 364 102AVOLT GH GH 140ATEMA GH GH 0.085 0.357 0.162 364 102AVOLT GH GH 140ATEMA GH GH 0.085 0.357 0.162 364 102AVOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 213.08 102AVOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 213.08 102AVOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 213.08 102AVOLT GH GH 1370KAOL GH GH 1.64 1.65 7.84 1.9525 213.08 102AVOLT GH GH 1370KAOL GH GH 1.64 1.65 7.84 1.9525 213.08 102AVOLT GH GH 1370KAOL GH GH GH 1.62 7.84 1.9525 213.08 102AVOLT GH GH 1370KAOL GH GH GH 1.62 7.84 1.9525 213.08 102AVOLT GH GH 1370KAOL GH GH GH 1.62 7.84 1.9525 213.08 102AVOLT GH GH 1370KAOL GH GH GH 1.62 7.84 1.9525 213.08 102AVOLT GH GH 1370KAOL GH GH GH 1.62 7.84 1.9525 213.08 102AVOLT GH GH 1370MALL GH GH GH 0.338 1.675 0.759 364 102AVOLT GH GH 1370MALL GH GH GH 0.338 1.675 0.759 364 102AVOLT GH GH 1370MALL GH GH GH 1.912 6.713 1.578 169.9 105AACH GH GH 1320ABOA GH GH GH 2.361 9.081 2.135 150 107OC-CO GH GH 1370MALL GH GH GH 2.361 9.081 2.135 150 108OTAKO GH GH 1320ABOA GH GH GH 2.29 8.2 1.855 169.9 108OTAKO GH GH 1320ABOA GH GH GH 2.29 8.2 1.855 169.9 108OTAKO GH GH 1320ABOA GH GH GH 2.29 8.2 1.855 169.9 108OTAKO GH GH 1320ABOA GH GH GH 2.29 8.2 1.855 169.9 108OTAKO GH GH 1320ABOA GH GH GH 2.29 8.2 1.855 169.9 108OTAKO GH GH 1320ABOA GH GH GH 2.29 8.2 1.855 169.9 108OTAKO GH GH 1320ABOA GH GH GH 2.29 8.2 1.855 169.9 108OTAKO GH GH 1320ABOA GH GH GH 2.29 8.2 1.855 169.9 108OTAKO GH GH 1320ABOA GH GH GH 2.29 8.2 1.855 169.9 108OTAKO G	1010AKOS	GH	GH	1140NKAW	GH	GH	3.226	13.587	6.157	364.3
1010AKOS GH GH 1150TAFO GH GH 2.72 9.74 2.205 169.9 1010AKOS GH GH 1150TAFO GH GH 1.577 6.84 3.09 364 1010AKOS GH GH 1170KPON GH GH 0.51 2.45 0.61 213.08 1010AKOS GH GH 1170KPON GH GH 0.51 2.45 0.61 213.08 1010AKOS GH GH 1170KPON GH GH 0.51 2.45 0.61 213.08 1010AKOS GH GH 1170KPON GH GH 0.77 3.81 0.915 213.08 1010AKOS GH GH 1220ASIE GH GH 3.94 8.89 1.935 128.12 1010AKOS GH GH 1390KPON GH GH 0.83 3.94 8.89 1.935 128.12 1010AKOS GH GH 1390KPON GH GH 0.83 3.94 8.89 1.935 128.12 1010AKOS GH GH 1390XPON GH GH 0.88 3.07 0.162 364 1020VOLT GH GH 1040TEMA GH GH GH 0.085 0.357 0.162 364 1020VOLT GH GH 1040TEMA GH GH GH 0.085 0.357 0.162 364 1020VOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1190KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 3190KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 3190KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 3190KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 3190KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 3190KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 3190KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 3190KPON GH GH 3.09 3.00 1.675 0.759 364 1020VOLT GH GH 3190KPON GH GH 3.00 3.00 1.675 0.759 364 1050ACH GH GH 3190MALL GH GH GH 0.398 1.675 0.759 364 1050ACH GH GH 3190MALL GH GH GH 3.94 1.675 0.759 364 1050ACH GH GH 3190MALL GH GH 3.94 1.675 0.759 364 1050ACH GH GH 3120ABOA GH GH 2.361 9.081 1.675 0.759 364 1060WINN GH GH 3120ABOA GH GH 2.361 9.081 1.675 0.759 364 1080TAKO GH GH 3120ABOA GH GH 2.296 8.2 1.855 169.9 1080TAKO GH GH 3120ABOA GH GH 3.74 1.42 8.27 4.305 150 1080TAKO GH GH 3120ABOA GH GH 3.74 1.42 8.27 4.305 150 1080TAKO GH GH 3120ABOA GH GH 0.037 1.29 0.305 169.9 1080TAKO GH GH 3120ABOA GH GH 0.037 1.29 0.305 169.9 1080TAKO GH GH 3120ABOA GH GH 0.037 1.29 0.305 169.9 1080TAKO GH GH 3120ABOA GH GH 0.037 1.29 0.305 169.9 1080TAKO GH GH 1300ABOA GH GH 0.047 1.344 0.345 1.345 1.345 1.345 1.345 1.345 1.345 1.345 1.345 1.345 1.345	1139K2BS	GH	GH	1140NKAW	GH	GH	2.476	10.427	4.725	364
1910AKOS	1139K2BS	GH	GH	1130KUMA	GH	GH	0.398	1.675	0.759	364
1010AKOS GH GH 1170KPON GH GH O.51 2.45 O.61 213.08	1010AKOS	GH	GH	1150TAFO	GH	GH	2.72	9.74	2.205	169.9
1010AKOS GH GH 1170KPON GH GH 0.51 2.45 0.61 213.08 1010AKOS GH GH 1150KPON GH GH 0.77 3.81 0.915 213.08 1010AKOS GH GH 1320ASIE GH GH 3.94 8.89 1.935 128.12 1010AKOS GH GH 3392 AFT GH GH 0.085 0.357 0.162 364 1020VOLT GH GH 1040TEMA GH GH 0.085 0.357 0.162 364 1020VOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1170KPON GH GH 1.64 8.429999 1.945 727.96 1050ACH GH GH 1370MALL GH GH 0.398 1.675 0.759 364 1370MALL GH GH 0.398 1.675 0.759 364 1370MALL GH GH 0.398 1.675 0.759 364 1050WINN GH GH 1370MALL GH GH 0.398 1.675 0.759 364 1060WINN GH GH 1320ABOA GH GH 5.34 20.61 4.865 150 1070°C-CO GH GH 1370MALL GH GH 4.74 18.27 4.305 150 1070°C-CO GH GH 1370MALL GH GH 4.74 18.27 4.305 150 1080TAKO GH GH 1370MALL GH GH 4.74 13.25 150 1080TAKO GH GH 1300ABOA GH GH 2.29 8.2 1.855 169.9 1080TAKO GH GH 1300ABOA GH GH 0.611 2.35 0.5552 169.9 1080TAKO GH GH 1300ABOA GH GH 0.74 11.15 2.555 182 1095NEWT GH GH 0.37 1.12 0.305 169.9 1080TAKO GH GH 1300BOGO GH GH 0.37 1.12 0.305 169.9 1100PRES GH GH 1300BOGO GH GH 0.37 1.12 0.305 364 1100PRES GH GH 1300BOGO GH GH 1.763 7.424 0.835 364 1100PRES GH GH 1300BOGO GH GH 1.294 1.284 5.815 364 1100PRES GH GH 1300BOGO GH GH 1.294 1.284 5.815 364 1100PRES GH	1010AKOS	GH	GH	1150TAFO	GH	GH	1.57	6.84	3.09	364
1010AKOS GH GH 1190KPON GH GH 0.77 3.81 1.915 1213.08 1010AKOS GH GH 1220ASIE GH GH 8.837 20.254 4.4135 128.12 1020VOLT GH GH 1040TEMA GH GH 0.085 0.357 0.162 364 1020VOLT GH GH 1040TEMA GH GH 0.085 0.357 0.162 364 1020VOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1370MALL GH GH 0.938 1.675 0.759 364 1370MALL GH GH 1.912 6.713 1.578 169.9 1370MALL GH GH 1320ABOA GH GH 5.34 20.61 4.865 150 1070C-CO GH GH 1320ABOA GH GH 2.361 9.081 2.135 150 1070C-CO GH GH 1370MALL GH GH 4.74 18.27 4.305 150 1080TAKO GH GH 1320ABOA GH GH 4.74 18.27 4.305 150 1080TAKO GH GH 1320ABOA GH GH 4.74 18.27 4.305 150 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.474 1.462 0.663 364 1090TAK GH GH 1300BOGO GH GH 0.474 1.462 0.663 364 1090TAK GH GH 1300BOGO GH GH 0.474 1.462 0.663 36	1010AKOS	GH	GH	1170KPON	GH	GH	0.51	2.45	0.61	213.08
1010AKOS GH GH 1220ASIE GH GH 3.94 8.89 1.935 128.12 1010AKOS GH GH 1392 AFT GH GH GH 8.837 20.254 4.4135 128.12 1020VOLT GH GH 1040TEMA GH GH 0.085 0.357 0.162 364 1020VOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 121.08 1020VOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 121.08 1020VOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 121.08 1020VOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 121.08 1020VOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 121.08 1020VOLT GH GH 1370MALL GH GH 0.398 1.675 0.759 364 1050ACHI GH GH 1370MALL GH GH 0.998 1.675 0.759 364 1050ACHI GH GH 1370MALL GH GH 0.998 1.675 0.759 364 1060WINN GH GH 1320ABOA GH GH 2.361 9.081 2.135 1070C-CO GH GH 1320ABOA GH GH 2.361 9.081 2.135 1070C-CO GH GH 1320ABOA GH GH 2.361 9.081 2.135 1080TAKO GH GH 1320ABOA GH GH 2.29 8.2 1.855 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1300BOGO GH GH 0.611 2.35 0.552 169.9 1090TARK GH GH 1009RES GH GH 0.474 1.462 0.663 364 1090TARK GH GH 1300BOGO GH GH 0.474 1.462 0.663 364 1090TARK GH GH 1300BOGO GH GH 0.477 1.424 3.364 364 1090TARK GH GH 1300BOGO GH GH 0.477 1.424 3.364 364 1090TARK GH GH 1300BOGO GH GH 0.477 1.424 3.364 364 1090TARK GH GH 1300BOGO GH GH 0.477 1.424 3.364 364 1090TARK GH GH 1300BOGO GH GH	1010AKOS	GH	GH	1170KPON	GH	GH	0.51	2.45	0.61	213.08
1010AKOS GH GH 1392 AFT GH GH 8.837 20.254 4.4135 128.12 1020VOLT GH GH 1040TEMA GH GH 0.085 0.357 0.162 364 1020VOLT GH GH 1140TEMA GH GH 0.085 0.357 0.162 364 1020VOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1170KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1190KPON GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1370MALL GH GH 1320ABOA GH GH 1.912 G.713 1.578 169.9 1070C-CO GH GH 1320ABOA GH GH 5.34 20.61 4.865 150 1070C-CO GH GH 1320ABOA GH GH 2.361 9.081 2.135 150 1070C-CO GH GH 1320ABOA GH GH 2.29 8.2 8.855 169.9 1080TAKO GH GH 1320ABOA GH GH 2.29 8.2 1.855 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1360ESSI GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1360ESSI GH GH 0.74 11.15 2.555 132 1995NEWT GH GH 1100PRES GH GH 0.74 11.15 2.555 132 1995NEWT GH GH 1100PRES GH GH 0.74 1.462 0.663 364 1000TAK GH GH 11200BUA GH GH 0.347 1.462 0.663 364 1100DRES GH GH 11200BUA GH GH 0.347 1.462 0.663 364 1100DRES GH GH 11200BUA GH GH 0.247 1.284 5.815 364 1100DRK GH GH 1210N-OB GH GH 0.247 1.284 5.815 364 1100DRK GH GH 1210N-OB GH GH 0.247 1.284 5.815 364 1100DRK GH GH 1210N-OB GH GH 0.247 1.284 5.815 364 1100DRK GH GH 1210N-OB GH GH 0.247 1.284 5.815 364 1100DRK GH GH 1210N-OB GH GH 0.247 1.285 1.259 5.94	1010AKOS	GH	GH	1190KPON	GH	GH	0.77	3.81	0.915	213.08
1020VOLT GH	1010AKOS	GH	GH	1220ASIE	GH	GH	3.94	8.89	1.935	128.12
1020VOLT GH GH GH 1040TEMA GH GH GH 0.085 0.357 0.162 364 1020VOLT GH GH GH 1170KPON GH GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH 1170KPON GH GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH GH 1170KPON GH GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH GH 1170KPON GH GH GH 1.14 8.429999 1.945 272.96 1050ACHI GH GH 1370MALL GH GH GH 0.398 1.675 0.759 364 1370MALL GH GH 1370MALL GH GH 0.398 1.675 0.759 364 1060WINN GH GH 1370MALL GH GH 0.398 1.675 0.759 364 1060WINN GH GH 1320ABOA GH GH 5.34 20.61 4.865 150 1070C-CO GH GH 1320ABOA GH GH 5.34 20.61 4.865 150 1070C-CO GH GH 1320ABOA GH GH 2.361 9.081 2.135 150 1070C-CO GH GH 1320ABOA GH GH 2.299 8.2 1.855 169.9 1080TAKO GH GH 1320ABOA GH GH CH 2.29 8.2 1.855 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1100PRES GH GH 0.94 3.46 0.84 169.9 1090TARK GH GH 1100PRES GH GH 0.94 3.46 0.84 169.9 1100PRES GH GH 1120DBUA GH GH 0.94 13.46 0.84 169.9 1100PRES GH GH 1120DBUA GH GH 0.37 1.29 0.305 169.9 1100PRES GH GH 1320ABOA GH GH 0.37 1.29 0.305 169.9 1100PRES GH GH 1320ABOA GH GH GH 0.347 1.462 0.663 364 1090TAKK GH GH 1320ABOA GH GH GH 0.347 1.462 0.663 364 1090TAKK GH GH 1320ABOA GH GH GH 0.347 1.462 0.663 364 1090TAKK GH GH 1320ABOA GH GH GH 0.347 1.462 0.663 364 1100DUNK GH GH GH 1320ABOA GH GH GH 0.347 1.462 0.663 364 1100DUNK GH GH GH 1320ABOA GH GH GH 0.347 1.462 0.663 364 1100DUNK GH GH GH 1320ABOA GH GH GH 0.347 1.462 0.663 364 1100DUNK GH GH GH 1320ABOA GH GH GH 0.347 1.462 0.663 364 1100DUNK GH GH GH 1320ABOA GH GH GH 0.347 1.462 0.835 364 1100DUNK GH GH GH 1320ABOA GH GH GH 1.20BOA GH GH	1010AKOS	GH	GH	1392 AFT	GH	GH	8.837	20.254	4.4135	128.12
1020VOLT GH GH GH 1170KPON GH GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH GH 1170KPON GH GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH GH 1190KPON GH GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH GH 1190KPON GH GH GH 1.62 7.84 1.9525 213.08 1050ACHI GH GH 1370MALL GH GH GH 0.398 1.675 0.759 364 1370MALL GH GH GH 1260WINN GH GH GH 1.912 6.713 1.578 169.9 1050ACHI GH GH 1370MALL GH GH GH 1.912 6.713 1.578 169.9 1050ACHI GH GH 1370MALL GH GH GH 1.912 6.713 1.578 169.9 1050ACHI GH GH 1370MALL GH GH GH 1.912 6.713 1.578 169.9 1050WINN GH GH 1320ABOA GH GH 5.34 20.61 4.865 150 1070C-CO GH GH 1320ABOA GH GH 2.361 9.081 2.135 150 1070C-CO GH GH 1370MALL GH GH GH 2.361 9.081 2.135 150 1070C-CO GH GH 1320ABOA GH GH 2.29 8.2 1.855 169.9 1080TAKO GH GH 1320ABOA GH GH O.6611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH O.6611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH O.6611 2.35 0.552 169.9 1080TAKO GH GH 13060SSI GH GH 0.6611 2.35 0.552 169.9 1090TARK GH GH 1100PRES GH GH 0.94 3.46 0.84 169.9 1090TARK GH GH 1100PRES GH GH 0.377 1.29 0.305 169.9 1100PRES GH GH 1320ABOA GH GH 0.347 1.462 0.663 364 1090TARK GH GH 1320ABOA GH GH 0.347 1.462 0.663 364 1090TARK GH GH 1320ABOA GH GH 0.347 1.462 0.663 364 1090TARK GH GH 1300BOGO GH GH 0.347 1.842 0.835 364 1100UNK GH GH 1300BOGO GH GH 0.437 1.842 0.835 364 1100UNK GH GH 1300BOGO GH GH 0.437 1.842 0.835 364 1100UNK GH GH 1300BOGO GH GH 0.4294 10.51 2.375 150 11100UNK GH GH 1180KONO GH GH 2.94 10.51 2.375 150 1120OBUA GH GH 1180KONO GH GH 2.94 10.51 2.375 150 1120OBUA GH GH 1180KONO GH GH 2.294 10.51 2.375 150 1120OBUA GH GH 1180KONO GH GH 2.294 10.51 2.375 150 1120OBUA GH GH 1180KONO GH GH GH 2.294 10.51 2.375 150 1120OBUA GH GH 1180KONO GH GH GH 2.294 10.51 2.375 150 1120OBUA GH GH 1180KONO GH GH GH 2.294 10.51 2.375 150 1120OBUA GH GH 1180KONO GH GH GH 2.294 10.51 2.375 150 1120OBUA GH GH 1180KONO GH GH GH 2.294 10.51 2.375 150 1120OBUA GH GH 1180KONO GH GH GH 2.294 10.51 2.375 150 1120OBUA GH GH 1180KONO GH GH GH 2.36 8.46 1.91 169.9 1110OKAWA GH GH GH 11307CFC GH GH GH 2.	1020VOLT	GH	GH	1040TEMA	GH	GH	0.085	0.357	0.162	364
1020VOLT GH GH GH 1170KPON GH GH GH 1.62 7.84 1.9525 213.08 1020VOLT GH GH GH 1190KPON GH GH GH 1.14 8.429999 1.945 727.96 1050ACHI GH GH 1370MALL GH GH 0.398 1.675 0.759 364 1370MALL GH GH GH 0.398 1.675 0.759 364 1370MALL GH GH GH 0.398 1.675 0.759 364 1370MALL GH GH GH 1.370MALL GH GH 0.398 1.675 0.759 364 1050ACHI GH GH 1320MBOA GH GH 5.34 20.61 4.865 150 1070C-CO GH GH 1320MBOA GH GH 2.361 9.081 2.135 150 1070C-CO GH GH 1320MBOA GH GH 2.361 9.081 2.135 150 1070C-CO GH GH 1320MBOA GH GH 2.361 9.081 2.135 150 1070C-CO GH GH 1320MBOA GH GH 4.74 18.27 4.305 150 1080TAKO GH GH 1320MBOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320MBOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320MBOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1360KSSI GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1360KSSI GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1300BOS GH GH 0.94 3.46 0.84 169.9 1090TARK GH GH 1009PES GH GH 0.94 3.46 0.84 169.9 1100PRES GH GH 1120DRUA GH GH 2.94 12.84 5.815 364 1090TARK GH GH 1300BOG GH GH 0.347 1.462 0.663 364 1090TARK GH GH 1300BOG GH GH 0.763 7.424 3.364 364 1090TARK GH GH 1300BOG GH GH 0.763 7.424 3.364 364 1090TARK GH GH 1300BOG GH GH 0.763 7.424 3.364 364 1090TARK GH GH 1300BOG GH GH 0.763 7.424 3.364 364 1090TARK GH GH 1300BOG GH GH 0.763 7.424 3.364 364 1090TARK GH GH 1300BOG GH GH 0.763 7.424 3.364 364 1090TARK GH GH 1300BOG GH GH 0.763 7.424 3.364 364 1090TARK GH GH 1100PRES GH GH 0.437 1.842 0.835 364 1100DUNK GH GH 1300BOG GH GH 0.763 7.424 3.364 364 1090TARK GH GH 1150TAFO GH GH 2.94 10.51 2.375 150 1120DUNK GH GH 1300BOG GH GH 0.327 1.13 0.255 170 1130KUMA GH GH GH 1210N-0B GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH GH 1210N-0B GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH GH 1180KONO GH GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH GH 1180KONO GH GH GH 2.265 9.47 2.14 169.9 1140NKAW GH GH GH 1180KONO GH GH GH 2.265 9.47 2.14 169.9 1140NKAW GH GH GH 1180KONO GH GH GH 2.265 9.47 2.14 169.9 1140NKAW GH GH GH 1180KONO GH GH GH 2.36 9.95 5.945 243.7 1280TAMA GH GH 1180KONO GH GH GH 2.36 9.95 5.945 243	1020VOLT	GH	GH	1040TEMA	GH	GH	0.085	0.357	0.162	364
1020VOLT GH GH GH 1190KPON GH GH GH 1.14 8.429999 1.945 272.96 1050ACHI GH GH GH 1370MALL GH GH CH 0.398 1.675 0.759 364 1050ACHI GH GH 1060WINN GH GH 1.912 6.713 1.578 169.9 1050ACHI GH GH 1370MALL GH GH CH 0.398 1.675 0.759 364 1060WINN GH GH 1370MALL GH GH 0.398 1.675 0.759 364 1060WINN GH GH 1320ABOA GH GH 5.34 20.61 4.865 150 1070C-CO GH GH 1320ABOA GH GH 2.361 9.081 2.135 150 1070C-CO GH GH 1320ABOA GH GH 2.261 9.081 2.135 150 1080TAKO GH GH 1320ABOA GH GH 2.29 8.2 1.855 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 130ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 130ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 130ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 130ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 130OBOO GH GH 0.94 3.46 0.84 169.9 1090TARK GH GH 1100PRES GH GH 0.94 3.46 0.84 169.9 1090TARK GH GH 1120OBUA GH GH 2.94 12.84 5.815 364 1100PRES GH GH 1120OBUA GH GH 2.94 12.84 5.815 364 1100PRES GH GH 1300BOO GH GH 0.347 1.462 0.663 364 1090TARK GH GH 61 1300BOO GH GH 0.437 1.842 0.835 364 1090TARK GH GH 1100PRES GH GH 0.437 1.842 0.835 364 1090TARK GH GH 1100PRES GH GH 0.437 1.842 0.835 364 1100DUNK GH GH 1210N-0B GH GH 1.11 3.97 0.895 169.9 1110DUNK GH GH 1210N-0B GH GH 2.94 10.51 2.375 150 1130KUMA GH GH 1180KONO GH GH 2.94 10.51 2.375 150 1130KUMA GH GH 1180KONO GH GH 2.94 12.84 5.815 364 1140NKAW GH GH 1180KONO GH GH 2.95 8.2 1.855 169.9 1130KUMA GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1180KONO GH GH 2.26 8.46 1.91 1.97 1.69.9 1150TAFO GH GH 1180KONO GH GH 2.26 9.95 5.945 2.34.7 1280TAMA GH GH 1180KONO GH GH S.3 3.581 3.621 1.82 1280T	1020VOLT	GH	GH	1170KPON	GH	GH	1.62	7.84	1.9525	213.08
1050ACHI GH GH 1370MALL GH GH 0.398 1.675 0.759 364 1370MALL GH GH 11060WINN GH GH 1.912 6.713 1.578 169.9 1050ACHI GH GH 1370MALL GH GH CH 0.398 1.675 0.759 364 1060WINN GH GH 1320ABOA GH GH 5.34 20.61 4.865 150 1070C-CO GH GH 1320ABOA GH GH 2.361 9.081 2.135 150 1070C-CO GH GH 1320ABOA GH GH 4.74 18.27 4.305 150 1070C-CO GH GH 1320ABOA GH GH 2.29 8.2 1.855 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1300ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1300ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1300ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1300ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1300ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1100PRES GH GH 0.37 1.29 0.305 169.9 1100PRES GH GH 1100PRES GH GH 0.37 1.29 0.305 169.9 1100PRES GH GH 1120OBUA GH GH 2.94 12.84 5.815 364 1100PRES GH GH 1300BOGO GH GH 2.94 12.84 5.815 364 1100PRES GH GH 1300BOGO GH GH 0.347 1.462 0.663 364 1100PRES GH GH 1300ABOA GH GH 1.763 7.424 3.364 364 1100PRES GH GH GH 1300ABOA GH GH 1.763 7.424 3.364 364 1110DUNK GH GH GH 1210N-OB GH GH 1.11 3.97 0.885 169.9 1110DUNK GH GH GH 1210N-OB GH GH 1.11 3.97 0.885 169.9 1110DUNK GH GH GH 1210N-OB GH GH CH 1.11 3.97 0.885 169.9 1130KUMA GH GH GH 1210N-OB GH GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH GH 1210N-OB GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH GH 1210N-OB GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH GH 1210N-OB GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH GH 1210N-OB GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH GH 1210N-OB GH GH CH 2.29 8.2 1.855 169.9 1130KUMA GH GH GH 1210N-OB GH GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH GH 1210N-OB GH GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH GH 1210N-OB GH GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH GH 1210N-OB GH GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH GH 1200N-OB GH GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH GH 1200N-OB GH GH S.3 15.8 15.8 15.8 15.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1	1020VOLT	GH	GH	1170KPON	GH	GH	1.62	7.84	1.9525	213.08
1370MALL GH GH 1060WINN GH GH 1.912 6.713 1.578 169.9 1050ACHI GH GH GH 1370MALL GH GH 0.398 1.675 0.759 364 1060WINN GH GH 1320ABOA GH GH 5.34 20.61 4.865 150 1070C-CO GH GH 1320ABOA GH GH 2.361 9.081 2.135 150 1070C-CO GH GH 1370MALL GH GH 2.361 9.081 2.135 150 1070C-CO GH GH 1370MALL GH GH 2.29 8.2 1.855 169.9 1080TAKO GH GH 1320ABOA GH GH 2.29 8.2 1.855 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 130OESSI GH GH 0.41 1.15 2.555 182 1095NEWT GH GH 1100PRES GH GH 0.94 3.46 0.84 169.9 1090TAKG GH GH 1100PRES GH GH 0.37 1.29 0.305 169.9 1100PRES GH GH 1120OBUA GH GH 2.94 12.84 5.815 364 1100PRES GH GH 1320ABOA GH GH 0.347 1.462 0.663 364 1100PRES GH GH 1320ABOA GH GH 0.40.37 1.462 0.663 364 1090TAK GH GH 1320ABOA GH GH 0.477 1.842 0.835 364 1110DUNK GH GH 1100PRES GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1100PRES GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1100PRES GH GH 0.4294 10.51 2.375 150 1120OBUA GH GH 1210N-OB GH GH 0.32 1.13 0.255 170 1130KUMA GH GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1180KONO GH GH 0.27 1.12 0.505 364 1130KUMA GH GH GH 1180KONO GH GH 0.294 12.84 5.815 364 1130KUMA GH GH GH 1150TAFO GH GH 0.265 9.47 2.14 169.9 1130KUMA GH GH GH 1150TAFO GH GH 2.24 12.84 5.815 364 1130KUMA GH GH GH 1150TAFO GH GH 2.24 12.84 5.815 364 1130KUMA GH GH GH 1150TAFO GH GH 2.28 8.46 1.91 1.69.9 1150TAFO GH GH 1150TAFO GH GH 2.28 8.46 1.91 1.69.9 1150TAFO GH GH 1150TAFO GH GH 2.23 8.46 1.91 1.69.9 1150TAFO GH GH 1150TAFO GH GH 2.23 8.46 1.91 1.69.9 1150TAFO GH GH 1150TAFO GH GH 2.23 8.46 1.91 1.69.9 1150TAFO GH GH 1150TAFO GH GH 2.23 8.46 1.91 1.69.9 1150TAFO GH GH 1150TAFO GH GH 2.23 8.46 1.91 1.69.9 1150TAFO GH GH 1150TAFO GH GH 3.50 1.52 3.99 5.945 2.43.7 1280TAMA GH GH GH 1200NOB GH GH GH 2.26 9.95 5.945 2.43.7 1280TAMA GH GH GH 1200NOB GH GH GH 2.26 9.	1020VOLT	GH	GH	1190KPON	GH	GH	1.14	8.429999	1.945	272.96
1050ACHI GH GH GH 1370MALL GH GH GH 0.398 1.675 0.759 364 1060WINN GH GH 1320ABOA GH GH S.34 20.61 4.865 150 1070C-CO GH GH 1320ABOA GH GH CH 2.361 9.081 2.135 150 1070C-CO GH GH 1370MALL GH GH CH 2.361 9.081 2.135 150 1070C-CO GH GH 1370MALL GH GH CH 2.29 8.2 1.855 169.9 1080TAKO GH GH 1090TARK GH GH CH 2.29 8.2 1.855 169.9 1080TAKO GH GH 1320ABOA GH GH O.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH O.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1360ESSI GH GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1360ESSI GH GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1360ESSI GH GH GH 0.611 2.35 0.552 169.9 1090TARK GH GH 1100PRES GH GH 0.94 3.46 0.84 169.9 1090TARK GH GH 1100PRES GH GH 0.94 3.46 0.84 169.9 1090TARK GH GH 1100PRES GH GH 0.37 1.29 0.305 169.9 1100PRES GH GH 1120DBUA GH GH 2.94 12.84 5.815 364 1090TARK GH GH 1300BOGO GH GH GH 0.37 1.492 0.663 364 1090TARK GH GH 1300BOGO GH GH GH 0.437 1.462 0.663 364 1090TARK GH GH 1100PRES GH GH 0.437 1.842 0.835 364 1100DUNK GH GH 1100PRES GH GH 1100PRES GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1130FRES GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1300BOGO GH GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1300BOGO GH GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1300BOGO GH GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1300BOGO GH GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1300BOGO GH GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1300BOGO GH GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1300BOGO GH GH GH 0.29 1.13 0.255 170 1130KUMA GH GH 1180KONO GH GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1180KONO GH GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1180KONO GH GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1180KONO GH GH GH 2.36 8.46 1.91 1.97 169.9 1140NKAW GH GH 1180KONO GH GH GH 2.36 8.46 1.91 1.97 169.9 1140NKAW GH GH GH 1150TAFO GH GH GH 2.36 8.46 1.91 1.90 1.90 1.90 1.90 1.90 1.90 1.90	1050ACHI	GH	GH	1370MALL	GH	GH	0.398	1.675	0.759	364
1060WINN GH GH GH 1320ABOA GH GH S.34 20.61 4.865 150 1070C-CO GH GH 1320ABOA GH GH GH 2.361 9.081 2.135 150 1080TAKO GH GH 1090TARK GH GH GH 2.29 8.2 1.885 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1300ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1300ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1300ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1100PRES GH GH 0.41 1.15 2.555 182 1095NEWT GH GH 1100PRES GH GH 0.40 3.74 11.15 2.555 182 1095NEWT GH GH 1100PRES GH GH 0.37 1.29 0.305 169.9 1100PRES GH GH 11200BUA GH GH 0.37 1.29 0.305 169.9 1100PRES GH GH 1300BOGO GH GH 0.347 1.462 0.663 364 1090TARK GH GH 1300BOGO GH GH 0.347 1.462 0.663 364 1090TARK GH GH 1300BOGO GH GH 0.347 1.462 0.663 364 1090TARK GH GH 1300BOGO GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1100PRES GH GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 210N-OB GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1130BOGO GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1210N-OB GH GH 0.40 1.11 3.97 0.895 169.9 1130KUMA GH GH 1130KONO GH GH CH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1130KONO GH GH CH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1140NKAW GH GH 1180KONO GH GH CH 2.36 8.46 1.91 169.9 1140NKAW GH GH 1180KONO GH GH CH 2.36 8.46 1.91 169.9 1140NKAW GH GH 1180KONO GH GH CH 2.36 8.46 1.91 1.97 169.9 1140NKAW GH GH 1180KONO GH GH GH 2.38 8.71 1.97 169.9 1140NKAW GH GH 1180KONO GH GH GH 2.38 8.71 1.97 169.9 1140NKAW GH GH GH 120NBUA GH GH 120NOBA GH GH 2.38 8.71 1.97 169.9 1150TAFO GH GH GH 2.36 8.46 1.91 1.805 182 1280TAMA GH GH 120NOBA GH GH GH 2.36 8.46 1.91 1.805 182 1280TAMA GH GH GH 120NOBA GH GH GH 2.36 9.95 9.94 5.945 243.7 1280TAMA GH GH GH 120NOBA GH GH GH 2.36 9.95 9.945 243.7 1280TAMA GH GH GH 120NOBA GH GH GH 2.36 9.95 9.945 243.	1370MALL	GH	GH	1060WINN	GH	GH	1.912	6.713	1.578	169.9
1070C-CO GH GH GH 1320ABOA GH GH 2.361 9.081 2.135 150 1070C-CO GH GH GH 1370MALL GH GH 4.74 18.27 4.305 150 1080TAKO GH GH 1090TARK GH GH 2.29 8.2 1.855 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1360ESSI GH GH 3.74 11.15 2.555 182 109SNEWT GH GH 1100PRES GH GH 0.94 3.46 0.84 169.9 1100PRES GH GH 1100PRES GH GH 0.37 1.29 0.305 169.9 1100PRES GH GH 1200BUA GH GH 2.94 12.84 5.815 364 1100PRES GH GH 1320ABOA GH GH 1.763 7.424 3.364 364 11090TARK GH GH 1320ABOA GH GH 1.763 7.424 3.364 364 11090TARK GH GH 1300BOGO GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1100PRES GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1210N-OB GH GH 1.11 3.97 0.895 169.9 11110DUNK GH GH 1210N-OB GH GH 2.94 10.51 2.375 150 11120CUBUA GH GH 1210N-OB GH GH 0.32 1.13 0.255 170 11130KUMA GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1140NKAW GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1140NKAW GH GH 1180KONO GH GH 2.29 1.284 5.815 364 1140NKAW GH GH 1180KONO GH GH 2.29 1.284 5.815 364 1140NKAW GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1140NKAW GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1140NKAW GH GH 1180KONO GH GH 2.29 1.284 5.815 364 1140NKAW GH GH 1180KONO GH GH 2.29 1.284 5.815 364 1140NKAW GH GH 1180KONO GH GH 2.36 8.46 1.91 169.9 1140NKAW GH GH 1180KONO GH GH 2.36 8.46 1.91 169.9 1140NKAW GH GH GH 120N-OB GH GH 2.36 8.46 1.91 169.9 1140NKAW GH GH GH 120N-OB GH GH 2.38 8.71 1.197 169.9 1150TAFO GH GH 160AKWA GH GH 2.38 8.71 1.197 169.9 1160AKWA GH GH 1180KONO GH GH 2.38 8.71 1.197 169.9 1160AKWA GH GH 1180KONO GH GH 3.3 6.16.73 4.13 243.72 1280TAMA GH GH 120N-OB GH GH 2.38 8.71 1.197 169.9 1160AKWA GH GH 1138TEGE GH GH 2.38 8.121 1.8265 182 1280TAMA GH GH 190OTESI GH GH 2.38 8.121 1.8265 182 1280TAMA GH GH 190OTESI GH GH 2.38 8.121 1.8265 182 1280TAMA GH GH GH 130OWER GH GH 2.38 8.99 5.945 243.7 1280TAMA GH GH GH 120N-OB GH GH 2.38 8.99 5.945 243.7 1280TAMA GH GH GH	1050ACHI	GH	GH	1370MALL	GH	GH	0.398	1.675	0.759	364
1070C-CO GH GH GH 1370MALL GH GH 4.74 18.27 4.305 150 1080TAKO GH GH 1090TARK GH GH CH 2.29 8.2 1.855 169.9 1080TAKO GH GH 1320ABOA GH GH O.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1360ESSI GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1360ESSI GH GH 0.94 3.46 0.84 169.9 1090TARK GH GH 1095NEWT GH GH 0.94 3.46 0.84 169.9 1090TARK GH GH 1095NEWT GH GH 0.94 3.46 0.84 169.9 1100PRES GH GH 1120OBUA GH GH 0.37 1.29 0.305 169.9 1100PRES GH GH 1300BOGO GH GH 0.347 1.462 0.663 364 1090TARK GH GH 1300BOGO GH GH 0.347 1.462 0.663 364 1090TARK GH GH 1320ABOA GH GH 1.763 7.424 3.364 364 1090TARK GH GH 1300BOGO GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1310DUNC GH GH 1210N-OB GH GH 1.11 3.97 0.895 169.9 1110DUNK GH GH GH 1210N-OB GH GH 1.11 3.97 0.895 169.9 1110DUNK GH GH GH 1210N-OB GH GH 0.32 1.13 0.255 170 1130KUMA GH GH 1180KONO GH GH 0.29 1.2 1.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	1060WINN	GH	GH	1320ABOA	GH	GH	5.34	20.61	4.865	150
1080TAKO GH GH 1090TARK GH GH 2.29 8.2 1.855 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1320ABOA GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH 1360ESSI GH GH 3.74 11.15 2.555 182 1095NEWT GH GH 1100PRES GH GH 0.94 3.46 0.84 169.9 1090TARK GH GH 1109SNEWT GH GH 0.37 1.29 0.305 169.9 1100PRES GH GH 1120OBUA GH GH 2.94 12.84 5.815 364 1100PRES GH GH 1300BOGO GH GH 0.377 1.462 0.663 364 1100PTARK GH GH 1300BOGO GH GH 1.763 7.424 3.364 364 1090TARK GH GH 1100PRES GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1210N-OB GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1300BOGO GH GH 1.11 3.97 0.895 169.9 1110DUNK GH GH 1300BOGO GH GH 2.94 10.51 2.375 150 1120OBUA GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1180KONO GH GH 0.229 8.2 1.855 169.9 1130KUMA GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1150TAFO GH GH 2.24 12.84 5.815 364 1140NKAW GH GH GH 1150TAFO GH GH 2.24 3.871 1.97 169.9 1150TAFO GH GH 1150AKWA GH GH 2.26 9.47 2.14 169.9 1150TAFO GH GH 1150AKWA GH GH 2.26 9.47 2.14 169.9 1150TAFO GH GH 1150AKWA GH GH 2.26 9.47 2.14 169.9 1150TAFO GH GH 1150AKWA GH GH 2.26 9.47 2.14 169.9 1150TAFO GH GH 1150AKWA GH GH 2.28 8.71 1.97 169.9 1150TAFO GH GH 1150AKWA GH GH 2.28 8.71 1.97 169.9 1150TAFO GH GH 1150AKWA GH GH 2.28 8.71 1.97 169.9 1150TAFO GH GH 1150AKWA GH GH 2.28 8.71 1.97 169.9 1150TAFO GH GH 1150AKWA GH GH 2.28 8.71 1.97 169.9 1150TAFO GH GH 1150AKWA GH GH 2.28 8.121 1.8265 182 1280TAMA GH GH 1350YEND GH GH GH 2.382 8.121 1.8265 182 1280TAMA GH GH GH 1350YEND GH GH GH 2.382 8.121 1.8265 182 1390DCEM GH GH 330ULOME GH GH 0.273 0.626 0.1365 128.12 1280TAMA GH GH GH 1350YEND GH GH GH 2.36 9.95 4.465 364 1260TECH GH GH GH 190OTESI GH GH 0.273 0.626 0.1365 128.12 1280TAMA GH GH GH 1350YEND GH GH GH 2.36 9.95 4.465 364 1260TECH GH GH GH 130WEXF GH GH 0.266 0.265 0.365 128.12 1280TAMA GH GH GH 130WEXF GH GH 0.273 0.626 0.1365 128.12 1280TAMA GH GH GH 1350YEND GH GH 0.266 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.3	1070C-CO	GH	GH	1320ABOA	GH	GH	2.361	9.081	2.135	150
1080TAKO GH GH I320ABOA GH GH O.611 2.35 0.552 169.9 1080TAKO GH GH I320ABOA GH GH O.611 2.35 0.552 169.9 1080TAKO GH GH I320ABOA GH GH GH 0.611 2.35 0.552 169.9 1080TAKO GH GH I360ESSI GH GH GH 3.74 11.15 2.555 182 1095NEWT GH GH I100PRES GH GH 0.94 3.46 0.84 169.9 1090TARK GH GH 1100PRES GH GH 0.37 1.29 0.305 169.9 1100PRES GH GH 1120OBUA GH GH 2.94 12.84 5.815 364 1100PRES GH GH 1300BOGO GH GH 0.347 1.462 0.663 364 1090TARK GH GH 1320ABOA GH GH 1.763 7.424 3.364 364 1090TARK GH GH 1100PRES GH GH 1.763 7.424 3.364 364 1090TARK GH GH 1100PRES GH GH 0.437 1.842 0.835 364 1100DUNK GH GH 1210N-OB GH GH 0.437 1.842 0.835 364 110DUNK GH GH 1210N-OB GH GH 1.11 3.97 0.895 169.9 1110DUNK GH GH 1300BOGO GH GH 2.94 10.51 2.375 150 1120OBUA GH GH 1300BOGO GH GH 0.32 1.13 0.255 170 1130KUMA GH GH 1180KONO GH GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1138T262 GH GH 0.27 1.12 0.505 364 1130KUMA GH GH 1138T262 GH GH 0.27 1.12 0.505 364 1140NKAW GH GH 1150TAFO GH GH 2.94 12.84 5.815 364 1140NKAW GH GH 1150TAFO GH GH 2.94 12.84 5.815 364 1140NKAW GH GH 1150TAFO GH GH 2.29 8.2 1.855 169.9 1150TAFO GH GH 1180KONO GH GH 2.24 3 8.71 1.97 169.9 1150TAFO GH GH 1180KONO GH GH 2.36 8.46 1.91 169.9 1150TAFO GH GH 120N-OB GH GH 2.36 8.46 1.91 169.9 1150TAFO GH GH 1150TAFO GH GH 2.38 8.41 1.97 169.9 1150TAFO GH GH 1150TAFO GH GH 2.38 8.41 1.97 169.9 1150TAFO GH GH 1150TAFO GH GH 3.30 4.31 243.72 1280TAMA GH GH GH 120N-OB GH GH 3.36 16.73 4.13 243.72 1280TAMA GH GH GH 1250VEND GH GH 5.15 23.99 5.945 243.7 1280TAMA GH GH GH 1250VEND GH GH 5.15 23.99 5.945 243.7 1280TAMA GH GH GH 1350VEND GH GH GH 5.38 15.81 3.621 182 1300BOGO GH GH GH 3301UND GH GH GH 5.38 15.81 3.621 182 1300BOGO GH GH GH 3301UND GH GH GH 2.36 9.95 1.945 243.7 1280TAMA GH GH GH 1350VEND GH GH GH 2.36 9.95 1.945 243.7 1280TAMA GH GH GH 1300VENF GH GH GH 2.36 9.95 1.465 182 1300BOGO GH GH GH 1300VENF GH GH GH 2.36 9.95 1.465 364 1270SUNY GH GH GH 3010LOME GH GH GH 2.36 9.95 1.465 364 1270SUNY GH GH GH 1.00 GH GH 2.36 9.95 1.465 364 1120OBUA GH GH GH 1000TESI GH GH C.36 9.95	1070C-CO	GH	GH	1370MALL	GH	GH	4.74	18.27	4.305	150
1080TAKO GH GH I320ABOA GH GH O.611 2.35 0.552 169.9 1080TAKO GH GH I360ESSI GH GH 3.74 11.15 2.555 182 1095NEWT GH GH GH 1100PRES GH GH 0.94 3.46 0.84 169.9 1090TARK GH GH 11200BUA GH GH 0.37 1.29 0.305 169.9 1100PRES GH GH 11200BUA GH GH 2.94 12.84 5.815 364 1100PRES GH GH 1300BOGO GH GH 0.347 1.462 0.663 364 1090TARK GH GH 1320ABOA GH GH 1.763 7.424 3.364 364 1090TARK GH GH 1100PRES GH GH 1100PRES GH GH 1100PRES GH GH 1100PRES GH GH 1210N-OB GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1210N-OB GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1300BOGO GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1300BOGO GH GH 0.329 11.13 0.255 170 1130KUMA GH GH 1138T262 GH GH 0.32 1.13 0.255 170 1130KUMA GH GH 1138T262 GH GH 0.297 1.12 0.505 364 1130KUMA GH GH 1138T262 GH GH 0.297 1.12 0.505 364 1140NKAW GH GH 1138T262 GH GH 0.297 1.12 0.505 364 1140NKAW GH GH 1138T262 GH GH C.299 8.2 1.855 169.9 1140NKAW GH GH 1138T262 GH GH 2.94 12.84 5.815 364 1140NKAW GH GH 1138T260 GH GH 2.94 12.84 5.815 364 1140NKAW GH GH 1138T260 GH GH 2.94 12.84 5.815 364 1140NKAW GH GH 1150TAFO GH GH 2.29 8.2 1.855 169.9 1140NKAW GH GH 1150TAFO GH GH 2.36 8.46 1.91 169.9 1150TAFO GH GH 2.36 8.46 1.91 169.9 1150TAFO GH GH 2.36 8.46 1.91 169.9 1150TAFO GH GH 3.6 16.73 4.13 243.72 1280TAMA GH GH GH 120N-OB GH GH 2.36 8.46 1.91 1.97 169.9 1150TAFO GH GH 3.6 16.73 4.13 243.72 1280TAMA GH GH GH 120N-OB GH GH 5.5 15 23.99 5.945 243.7 1280TAMA GH GH GH 120N-OB GH GH 5.5 15 23.99 5.945 243.7 1280TAMA GH GH GH 120N-OB GH GH GH 5.36 15.81 3.621 182 1300BOGO GH GH GH 330WEXF GH GH GH 0.273 0.626 0.1365 128.12 1390DCEM GH GH GH 300LOME GH GH GH 0.273 0.626 0.1365 128.12 1260TECH GH GH GH 1270SUNY GH GH GH 1.88 8.36 2.06 2.44 4.150 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.9	1080TAKO	GH	GH	1090TARK	GH	GH	2.29	8.2	1.855	169.9
1080TAKO GH GH 1360ESSI GH GH 3.74 11.15 2.555 182 1095NEWT GH GH 1100PRES GH GH GH 0.94 3.46 0.84 169.9 1090TARK GH GH 11095NEWT GH GH GH 0.37 1.29 0.305 169.9 1100PRES GH GH 1120OBUA GH GH 2.94 12.84 5.815 364 1090TARK GH GH 1320ABOA GH GH 1.763 7.424 3.364 3.64 364 1090TARK GH GH 1100PRES GH GH 1100PRES GH GH 1100PRES GH GH 1300BOGO GH GH 0.347 1.462 0.663 364 1090TARK GH GH 1100PRES GH GH 1100PRES GH GH 1.763 7.424 3.364 364 1090TARK GH GH 1100PRES GH GH 1.763 7.424 3.364 364 1110DUNK GH GH 1210N-OB GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1210N-OB GH GH 1.11 3.97 0.895 169.9 1110DUNK GH GH 1210N-OB GH GH 2.94 10.51 2.375 150 1120OBUA GH GH 1210N-OB GH GH 2.94 10.51 2.375 150 1120OBUA GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1260TECH GH GH 2.94 12.84 5.815 364 1140NKAW GH GH 1150TAFO GH GH 2.94 12.84 5.815 364 1140NKAW GH GH 1150TAFO GH GH 2.43 8.71 1.97 169.9 1150TAFO GH GH 1180KONO GH GH 2.36 8.46 1.91 1.69.9 1150TAFO GH GH 1160AKWA GH GH 1160AKWA GH GH GH 120NCAWA GH GH 3.6 16.73 4.13 243.72 1280TAMA GH GH GH 1210N-OB GH GH 5.15 23.99 5.945 243.7 1280TAMA GH GH GH 120NCAWA GH GH 330VEND GH GH 5.15 23.99 5.945 243.7 1280TAMA GH GH GH 130VEND GH GH 5.15 23.99 5.945 243.7 1280TAMA GH GH GH 130VEND GH GH 5.15 23.99 5.945 243.7 1280TAMA GH GH GH 130VEND GH GH 5.15 23.99 5.945 243.7 1280TAMA GH GH GH 130VEND GH GH 5.15 23.99 5.945 243.7 1280TAMA GH GH GH 130VEND GH GH GH 5.15 23.99 5.945 243.7 1280TAMA GH GH GH 130VEND GH GH GH 5.15 23.99 5.945 243.7 1280TAMA GH GH GH 120NCOW GH GH GH 5.36 4.56 0.955 1.82 1390DCEM GH GH GH 130VEND GH GH GH 2.366 9.95 4.466 0.1365 128.12 1200TECH GH GH GH 130VEND GH GH GH 2.366 9.95 4.466 0.1365 128.12 1200TECH GH GH GH 130VEND GH GH GH 2.366 9.95 4.466 0.1365 128.12 1200TECH GH GH GH 1413KENY GH GH 1.8 4.66 2.0235 3.64 1120OBUA GH GH GH 1138T261 GH GH 6H 1.138T261 GH GH 1.1413KENY GH GH 1.8 4.66 2.0235 3.64 1120OBUA GH GH GH 1138T261 GH GH 6H 1.135ENY GH GH 6	1080TAKO	GH	GH	1320ABOA	GH	GH	0.611	2.35	0.552	169.9
1095NEWT GH GH 1100PRES GH GH 0.94 3.46 0.84 169.9 1090TARK GH GH 1095NEWT GH GH 0.37 1.29 0.305 169.9 1100PRES GH GH 1120OBUA GH GH 2.94 12.84 5.815 364 1100PRES GH GH 1300BOGO GH GH GH 0.347 1.462 0.663 364 1090TARK GH GH 1320ABOA GH GH 1.763 7.424 3.364 364 1090TARK GH GH 1300DRES GH GH 0.437 1.842 0.835 364 1100PRES GH GH 1100PRES GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1310BOGO GH GH 1.11 3.97 0.895 169.9 1110DUNK GH GH 1310BOGO GH GH 2.94 10.51 2.375 150 1120OBUA GH GH 1210N-OB GH GH 0.32 1.13 0.255 170 1130KUMA GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1138T262 GH GH 0.27 1.12 0.505 364 1140NKAW GH GH 1150TAFO GH GH 2.94 12.84 5.815 364 1140NKAW GH GH 1180KONO GH GH 2.94 12.84 5.815 364 1140NKAW GH GH 1180KONO GH GH 2.29 12.84 5.815 364 1140NKAW GH GH 1150TAFO GH GH 2.36 8.46 1.91 169.9 1150TAFO GH GH 110AKWA GH GH 2.243 8.71 1.97 169.9 1160AKWA GH GH 1210N-OB GH GH 2.36 8.46 1.91 169.9 1150TAFO GH GH 1210N-OB GH GH 3.6 16.73 4.13 243.72 1280TAMA GH GH 1210N-OB GH GH 5.3 15.81 3.621 182 1300BOGO GH GH 1392AFT GH GH GH 0.273 0.626 0.1365 128.12 1300DCEM GH GH 3010LOME GH GH 0.273 0.626 0.1365 128.12 1300DCEM GH GH 1318T261 GH GH 2.36 9.95 4.465 364 1270SUNY GH GH GH 1413KENY GH GH GH 1.92 6.87 1.55 169.9	1080TAKO	GH	GH	1320ABOA	GH	GH	0.611	2.35	0.552	169.9
1090TARK GH GH 1095NEWT GH GH GH 0.37 1.29 0.305 169.9 1100PRES GH GH 1120OBUA GH GH 2.94 12.84 5.815 364 1100PRES GH GH 1320ABOA GH GH 0.347 1.462 0.663 364 1090TARK GH GH 1320ABOA GH GH 0.347 1.462 0.835 364 1090TARK GH GH 1100PRES GH GH GH 0.437 1.842 0.835 364 11010DUNK GH GH 1100PRES GH GH GH 1.1763 7.424 0.835 364 1110DUNK GH GH 1210N-OB GH GH 1.11 3.97 0.895 169.9 1110DUNK GH GH 1210N-OB GH GH 2.94 10.51 2.375 150 1120OBUA GH GH 1210N-OB GH GH 0.32 1.13 0.255 170 1130KUMA GH GH 1138KONO GH GH 0.32 1.13 0.255 170 1130KUMA GH GH 1138T262 GH GH 0.27 1.12 0.505 364 1130KUMA GH GH 1138T262 GH GH 0.27 1.12 0.505 364 1140NKAW GH GH 1150TAFO GH GH 2.94 12.84 5.815 364 1140NKAW GH GH 1150TAFO GH GH 2.29 8.2 1.855 169.9 1150TAFO GH GH 1180KONO GH GH 2.24 38.71 1.97 169.9 1150TAFO GH GH 1160AKWA GH GH 1160AKWA GH GH 2.43 8.71 1.97 169.9 1150TAFO GH GH 1160AKWA GH GH 1210N-OB GH GH 2.43 8.71 1.97 169.9 1150TAFO GH GH 1210N-OB GH GH 3.6 16.73 4.13 243.72 1280TAMA GH GH GH 1290BOLG GH GH 5.3 15.81 3.621 182 1300BOGO GH GH 1392AFT GH GH GH 2.382 8.121 1.8265 182 1390DCEM GH GH 3301LOME GH GH 3010LOME GH GH 2.382 8.121 1.8265 182 1390DCEM GH GH 3301LOME GH GH GH 2.36 9.95 4.465 364 1270SUNY GH GH GH 1270SUNY GH GH GH 2.36 9.95 4.465 364 1270SUNY GH GH GH 1318T261 GH GH 1413KENY GH GH GH 1.84 11.53 2.67 244 1100BUA GH GH 1138T261 GH GH 1138T261 GH GH 1413KENY GH GH GH 1.85 15.5 1.59 11.50 11	1080TAKO	GH	GH	1360ESSI	GH	GH	3.74	11.15	2.555	182
1100PRES GH GH 11200BUA GH GH 2.94 12.84 5.815 364 1100PRES GH GH 1300BOGO GH GH 0.347 1.462 0.663 364 1090TARK GH GH 1320ABOA GH GH 0.437 1.842 0.835 364 1100DUNK GH GH 1210N-OB GH GH 1.11 3.97 0.895 169.9 1110DUNK GH GH 1300BOGO GH GH 0.32 1.13 0.255 170 1120OBUA GH GH 1210N-OB GH GH 0.32 1.13 0.255 170 1130KUMA GH GH 1138T262 GH GH 0.2.94 10.51 2.375 169.9 1130KUMA GH GH 1138T262 GH GH 0.2.94 12.84 5.815 364 1140NKAW GH GH 1150TAFO GH GH 2.94 12.84 5.815 364 1140NKAW GH GH 1150TAFO GH GH 2.94 12.84 5.815 364 1140NKAW GH GH 1150TAFO GH GH 2.94 12.84 5.815 364 1140NKAW GH GH 1180KONO GH GH 2.95 9.47 2.14 169.9 1150TAFO GH GH 120N-OB GH GH 2.36 8.46 1.91 169.9 1150TAFO GH GH 120N-OB GH GH 2.36 8.46 1.91 169.9 1150TAFO GH GH 120N-OB GH GH 2.43 8.71 1.97 169.9 1150TAFO GH GH 120N-OB GH GH 3.6 16.73 4.13 243.72 1280TAMA GH GH 1250NEOB GH GH 3.6 16.73 4.13 243.72 1280TAMA GH GH 1350YEND GH GH 5.3 15.81 3.621 182 1300BOGO GH GH 1309WEXF GH GH 5.3 15.81 3.621 182 1300BOGO GH GH 1392AFT GH GH GH 2.382 8.121 1.8265 182 1390DCEM GH GH 1392AFT GH GH GH 2.36 9.95 4.465 364 1270SUNY GH GH GH 2.36 9.95 4.465 364 1270SUNY GH GH GH 2.36 9.95 4.465 364 1270SUNY GH GH GH 1.188KNY GH GH 1.18 8.36 2.06 2.245 1200BUA GH GH 1413KENY GH GH 1.8 8.36 2.05 2.255 364 1120OBUA GH GH 1413KENY GH GH 1.06 4.466 2.0235 364 1120OBUA GH GH 1413KENY GH GH 1.92 6.87 1.55 169.9 1138T261 GH GH 1413KENY GH GH H.84 11.53 2.67 244	1095NEWT	GH	GH	1100PRES	GH	GH	0.94	3.46	0.84	169.9
1100PRES GH GH 1300BOGO GH GH GH 0.347 1.462 0.663 364 1090TARK GH GH 1320ABOA GH GH 1.763 7.424 3.364 364 1090TARK GH GH 1100PRES GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1210N-OB GH GH 1.11 3.97 0.895 169.9 1110DUNK GH GH 1300BOGO GH GH 2.94 10.51 2.375 150 1120OBUA GH GH 1180KONO GH GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1180KONO GH GH 0.229 8.2 1.855 169.9 1130KUMA GH GH 1138T262 GH GH 0.27 1.12 0.505 364 1140NKAW GH GH 1150TAFO GH GH 2.94 12.84 5.815 364 1140NKAW GH GH 1150TAFO GH GH 2.36 8.46 1.91 169.9 1150TAFO GH GH 1160AKWA GH GH 1210N-OB GH GH 2.43 8.71 1.97 169.9 1160AKWA GH GH 1210N-OB GH GH 3.6 16.73 4.13 243.72 1280TAMA GH GH 1350YEND GH GH 5.3 15.81 3.621 182 1300BOGO GH GH 130YEND GH GH 5.3 15.81 3.621 182 1300BOGO GH GH 3010LOME GH GH 0.27 0.626 0.1365 128.12 1390DCEM GH GH 1370SUNY GH GH 1370SUNY GH GH 1370SUNY GH GH 1270SUNY GH GH 1413KENY GH GH 1.84 11.53 2.67 244 11.00 H 1.00 11.00 1.00 1.00 1.00 1.00	1090TARK	GH	GH	1095NEWT	GH	GH	0.37	1.29		169.9
1090TARK GH GH 1320ABOA GH GH 1.763 7.424 3.364 364 1090TARK GH GH 1100PRES GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1210N-OB GH GH 1.11 3.97 0.895 169.9 1110DUNK GH GH 1300BOGO GH GH 2.94 10.51 2.375 150 1120OBUA GH GH 1180KONO GH GH GH 0.32 1.13 0.255 170 1130KUMA GH GH 1180KONO GH GH GH 0.229 8.2 1.855 169.9 1130KUMA GH GH 1138T262 GH GH 0.27 1.12 0.505 364 1130KUMA GH GH 1150TAFO GH GH 2.94 12.84 5.815 364 1140NKAW GH GH 1150TAFO GH GH 2.36 8.46 1.91 169.9 1150TAFO GH GH 1180KONO GH GH 2.43 8.71 1.97 169.9 1150TAFO GH GH 1160AKWA GH GH 11210N-OB GH GH 2.43 8.71 1.97 169.9 1150TAFO GH GH 1210N-OB GH GH 3.6 16.73 4.13 243.72 1280TAMA GH GH 1290BOLG GH GH 5.15 23.99 5.945 243.7 1280TAMA GH GH 1350YEND GH GH 5.3 15.81 3.621 182 1300BOGO GH GH 1309WEXF GH GH 5.3 15.81 3.621 182 1300BOGO GH GH 1392 AFT GH GH CH 2.36 9.95 4.465 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	1100PRES	GH	GH	11200BUA	GH	GH	2.94	12.84	5.815	364
1090TARK GH GH I100PRES GH GH 0.437 1.842 0.835 364 1110DUNK GH GH 1210N-OB GH GH GH 1.11 3.97 0.895 169.9 1110DUNK GH GH 1300BOGO GH GH GH 2.94 10.51 2.375 150 1120OBUA GH GH 1210N-OB GH GH GH 0.32 1.13 0.255 170 1130KUMA GH GH 1180KONO GH GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1138T262 GH GH 0.27 1.12 0.505 364 1130KUMA GH GH 1150TAFO GH GH 2.94 12.84 5.815 364 1140NKAW GH GH 1150TAFO GH GH 2.36 8.46 1.91 169.9 1150TAFO GH GH 2.43 8.71 1.97 169.9 1150TAFO GH GH 1210N-OB GH GH 2.43 8.71 1.97 169.9 1150TAFO GH GH 1220N-OB GH GH 3.6 16.73 4.13 243.72 1280TAMA GH GH 1290BOLG GH GH 5.15 23.99 5.945 243.7 1280TAMA GH GH 1350YEND GH GH 5.15 23.99 5.945 243.7 1280TAMA GH GH 130WEXF GH GH 5.15 23.99 5.945 243.7 1280TAMA GH GH 130WEXF GH GH 5.15 23.82 8.121 1.8265 182 1390DCEM GH GH 3010LOME GH GH 0.273 0.626 0.1365 128.12 1260TECH GH GH 1270SUNY GH GH GH 2.36 9.95 4.465 364 1270SUNY GH GH 1413KENY GH GH GH 1.06 4.466 2.0235 364 11200BUA GH GH GH 1138T261 GH GH GH 1.92 6.87 1.55 169.9 1138T261 GH GH GH 1.413KENY GH GH GH 1.84 11.53 2.67 244	1100PRES	GH	GH	1300BOGO	GH	GH	0.347	1.462	0.663	364
1110DUNK GH GH 1210N-OB GH GH 1.11 3.97 0.895 169.9 1110DUNK GH GH 1300BOGO GH GH 2.94 10.51 2.375 150 1120OBUA GH GH 1210N-OB GH GH 0.32 1.13 0.255 170 1130KUMA GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1138T262 GH GH 0.27 1.12 0.505 364 1130KUMA GH GH 1260TECH GH GH 2.94 12.84 5.815 364 1140NKAW GH GH 1150TAFO GH GH 2.65 9.47 2.14 169.9 1140NKAW GH GH 1180KONO GH GH 2.36 8.46 1.91 169.9 1150TAFO GH GH 1160AKWA GH GH 2.43 8.71 1.97 169.9 1160AKWA GH GH 1210N-OB GH GH 3.6 16.73 4.13 243.72 1280TAMA GH GH 1290BOLG GH GH 5.15 23.99 5.945 243.7 1280TAMA GH GH 1350YEND GH GH 5.3 15.81 3.621 182 1300BOGO GH GH 1392 AFT GH GH 0.1 0.21 0.05 180 1392 AFT GH GH 3010LOME GH GH 0.273 0.626 0.1365 128.12 1260TECH GH GH 1270SUNY GH GH 1.8 8.36 2.06 244 1260TECH GH GH 1413KENY GH GH 1.92 6.87 1.55 169.9 1138T261 GH GH 1413KENY GH GH 1.8 11.53 2.67 244	1090TARK	GH	GH	1320ABOA	GH	GH	1.763	7.424	3.364	364
1110DUNK GH GH 1300BOGO GH GH 2.94 10.51 2.375 150 11200BUA GH GH 1210N-OB GH GH 0.32 1.13 0.255 170 1130KUMA GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1138T262 GH GH 0.27 1.12 0.505 364 1130KUMA GH GH 1260TECH GH GH 2.94 12.84 5.815 364 1140NKAW GH GH 1150TAFO GH GH 2.65 9.47 2.14 169.9 1140NKAW GH GH 1180KONO GH GH 2.36 8.46 1.91 169.9 1150TAFO GH GH 1160AKWA GH GH 2.43 8.71 1.97 169.9 1160AKWA GH GH 1210N-OB GH GH 3.6 16.73 4.13 243.72 1280TAMA GH GH 1290BOLG GH GH 5.15 23.99 5.945 243.7 1280TAMA GH GH 1350YEND GH GH 5.3 15.81 3.621 182 1300BOGO GH GH 1392 AFT GH GH 0.1 0.21 0.05 180 1392 AFT GH GH 3010LOME GH GH 0.273 0.626 0.1365 128.12 1260TECH GH GH 1900TESI GH GH 2.36 9.95 4.465 364 11200BUA GH GH 1138T261 GH GH 1.92 6.87 1.55 169.9 1138T261 GH GH 1413KENY GH GH 1.84 11.53 2.67 244	1090TARK	GH	GH	1100PRES	GH	GH	0.437	1.842	0.835	364
11200BUA GH GH 1210N-OB GH GH 0.32 1.13 0.255 170 1130KUMA GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1138T262 GH GH 0.27 1.12 0.505 364 1130KUMA GH GH 1260TECH GH GH 2.94 12.84 5.815 364 1140NKAW GH GH 1150TAFO GH GH 2.65 9.47 2.14 169.9 1140NKAW GH GH 1180KONO GH GH 2.36 8.46 1.91 169.9 1150TAFO GH GH 1160AKWA GH GH 2.43 8.71 1.97 169.9 1160AKWA GH GH 1210N-OB GH GH 3.6 16.73 4.13 243.72 1280TAMA GH GH 1290BOLG GH GH 5.15 23.99 5.945 243.7 1280TAMA GH GH 1350YEND GH GH 5.3 15.81 3.621 182 1300BOGO GH GH 1392AFT GH GH 0.1 0.21 0.05 180 1392AFT GH GH 3010LOME GH GH 0.273 0.626 0.1365 128.12 1260TECH GH GH 1900TESI GH GH 2.36 9.95 4.465 364 11200BUA GH GH 1138T261 GH GH 1.84 11.53 2.67 244 1138T261 GH GH 1413KENY GH GH 1.84 11.53 2.67 244	1110DUNK	GH	GH	1210N-OB	GH				0.895	169.9
1130KUMA GH GH 1180KONO GH GH 2.29 8.2 1.855 169.9 1130KUMA GH GH 1138T262 GH GH 0.27 1.12 0.505 364 1130KUMA GH GH 1260TECH GH GH 12.84 5.815 364 1140NKAW GH GH 1150TAFO GH GH 2.65 9.47 2.14 169.9 1150TAFO GH GH GH 2.36 8.46 1.91 169.9 1150TAFO GH GH GH 2.36 8.46 1.91 169.9 1150TAFO GH GH GH GH 2.43 8.71 1.97 169.9 1150TAFO GH GH GH GH 2.43 8.71 1.97 169.9 1150TAFO GH GH GH GH 3.6 16.73 4.13 243.72 1280TAFA GH GH	1110DUNK	GH	GH	1300BOGO	GH	GH	2.94	10.51	2.375	150
1130KUMA GH GH 1138T262 GH GH 0.27 1.12 0.505 364 1130KUMA GH GH 1260TECH GH GH 2.94 12.84 5.815 364 1140NKAW GH GH 1150TAFO GH GH 2.65 9.47 2.14 169.9 1150TAFO GH GH GH 2.36 8.46 1.91 169.9 1150TAFO GH GH GH 2.36 8.46 1.91 169.9 1150TAFO GH GH GH 2.36 8.46 1.91 169.9 1150TAFO GH GH GH GH 2.36 8.46 1.91 169.9 1150TAFO GH GH GH GH 2.33 8.71 1.97 169.9 1160AKWA GH GH GH 3.6 16.73 4.13 243.72 1280TAMA GH GH 1350YEND GH	11200BUA	GH	GH	1210N-OB	GH	GH		1.13	0.255	170
1130KUMA GH GH 1260TECH GH GH 2.94 12.84 5.815 364 1140NKAW GH GH 1150TAFO GH GH 2.65 9.47 2.14 169.9 1140NKAW GH GH 1180KONO GH GH 2.36 8.46 1.91 169.9 1150TAFO GH GH 1160AKWA GH GH 2.43 8.71 1.97 169.9 1150TAFO GH GH 1210N-OB GH GH 3.6 16.73 4.13 243.72 1280TAMA GH GH 1290BOLG GH GH 5.15 23.99 5.945 243.7 1280TAMA GH GH 1350YEND GH GH 5.3 15.81 3.621 182 1300BOGO GH GH 1309WEXF GH GH 2.382 8.121 1.8265 182 1390DCEM GH GH 3010LOME GH GH 0.1 0.21 0.05 180 1392 AFT GH GH 3010LOME GH GH 0.273 0.626 0.1365 128.12 1260TECH GH GH 1270SUNY GH GH 1.8 8.36 2.06 244 1260TECH GH GH 1900TESI GH GH 2.36 9.95 4.465 364 1270SUNY GH GH GH 1138T261 GH GH 1.92 6.87 1.55 169.9 1138T261 GH GH 1413KENY GH GH I.8 11.53 2.67 244	1130KUMA	GH	GH	1180KONO	GH	GH		8.2	1.855	169.9
1140NKAW GH GH 1150TAFO GH GH 2.65 9.47 2.14 169.9 1140NKAW GH GH 1180KONO GH GH 2.36 8.46 1.91 169.9 1150TAFO GH GH 1160AKWA GH GH 2.43 8.71 1.97 169.9 1160AKWA GH GH GH GH 3.6 16.73 4.13 243.72 1280TAMA GH GH 1290BOLG GH GH 5.15 23.99 5.945 243.7 1280TAMA GH GH 1350YEND GH GH 5.3 15.81 3.621 182 1300BOGO GH GH 1309WEXF GH GH 2.382 8.121 1.8265 182 1390DCEM GH GH 3010LOME GH GH 0.21 0.05 180 1392 AFT GH GH GH GH 0.273 0.626 <	1130KUMA	GH	GH	1138T262	GH	GH	0.27	1.12	0.505	364
1140NKAW GH GH 1180KONO GH GH 2.36 8.46 1.91 169.9 1150TAFO GH GH 1160AKWA GH GH 2.43 8.71 1.97 169.9 1160AKWA GH GH 1210N-OB GH GH 3.6 16.73 4.13 243.72 1280TAMA GH GH 1290BOLG GH GH 5.15 23.99 5.945 243.7 1280TAMA GH GH 1350YEND GH GH 5.3 15.81 3.621 182 1300BOGO GH GH 1309WEXF GH GH 2.382 8.121 1.8265 182 1390DCEM GH GH 1392 AFT GH GH 0.1 0.21 0.05 180 1392 AFT GH GH GH 0.273 0.626 0.1365 128.12 1260TECH GH GH GH 1.8 8.36 2.06	1130KUMA	GH	GH	1260TECH	GH	GH		12.84	5.815	364
1150TAFO GH GH 1160AKWA GH GH 2.43 8.71 1.97 169.9 1160AKWA GH GH 1210N-OB GH GH 3.6 16.73 4.13 243.72 1280TAMA GH GH 1290BOLG GH GH 5.15 23.99 5.945 243.7 1280TAMA GH GH 1350YEND GH GH 5.3 15.81 3.621 182 1300BOGO GH GH 1309WEXF GH GH 2.382 8.121 1.8265 182 1390DCEM GH GH 1392 AFT GH GH 0.1 0.21 0.05 180 1392 AFT GH GH GH GH 0.273 0.626 0.1365 128.12 1260TECH GH GH GH 1.8 8.36 2.06 244 1260TECH GH GH GH 1.8 8.36 2.06 244	1140NKAW	GH	GH	1150TAFO	GH	GH			2.14	169.9
1160AKWA GH GH 1210N-OB GH GH 3.6 16.73 4.13 243.72 1280TAMA GH GH 1290BOLG GH GH 5.15 23.99 5.945 243.7 1280TAMA GH GH 1350YEND GH GH 5.3 15.81 3.621 182 1300BOGO GH GH 1309WEXF GH GH 2.382 8.121 1.8265 182 1390DCEM GH GH 1392 AFT GH GH 0.1 0.21 0.05 180 1392 AFT GH GH GH GH 0.273 0.626 0.1365 128.12 1260TECH GH GH GH GH 1.8 8.36 2.06 244 1260TECH GH GH GH 1.8 8.36 2.06 244 1260TECH GH GH GH 2.36 9.95 4.465 364 1270SUNY	1140NKAW	GH	GH	1180KONO	GH	GH	2.36	8.46	1.91	169.9
1280TAMA GH GH 1290BOLG GH GH 5.15 23.99 5.945 243.7 1280TAMA GH GH 1350YEND GH GH 5.3 15.81 3.621 182 1300BOGO GH GH 1309WEXF GH GH 2.382 8.121 1.8265 182 1390DCEM GH GH 1392 AFT GH GH 0.1 0.21 0.05 180 1392 AFT GH GH GH 0.273 0.626 0.1365 128.12 1260TECH GH GH GH GH 1.8 8.36 2.06 244 1260TECH GH GH 1900TESI GH GH 2.36 9.95 4.465 364 1270SUNY GH GH GH 1.06 4.466 2.0235 364 11200BUA GH GH 1138T261 GH GH 1.84 11.53 2.67 244 <	1150TAFO	GH	GH	1160AKWA	GH	GH	2.43	8.71	1.97	169.9
1280TAMA GH GH 1350YEND GH GH 5.3 15.81 3.621 182 1300BOGO GH GH 1309WEXF GH GH 2.382 8.121 1.8265 182 1390DCEM GH GH 1392 AFT GH GH 0.1 0.21 0.05 180 1392 AFT GH GH GH 0.273 0.626 0.1365 128.12 1260TECH GH GH 1270SUNY GH GH 1.8 8.36 2.06 244 1260TECH GH GH 1900TESI GH GH 2.36 9.95 4.465 364 1270SUNY GH GH GH 1.06 4.466 2.0235 364 11200BUA GH GH 1138T261 GH GH 1.84 11.53 2.67 244	1160AKWA	GH	GH	1210N-OB	GH		3.6	16.73	4.13	243.72
1300BOGO GH GH 1309WEXF GH GH 2.382 8.121 1.8265 182 1390DCEM GH GH 1392 AFT GH GH GH 0.1 0.21 0.05 180 1392 AFT GH GH 3010LOME GH GH 0.273 0.626 0.1365 128.12 1260TECH GH GH 1270SUNY GH GH 1.8 8.36 2.06 244 1260TECH GH GH 1900TESI GH GH 2.36 9.95 4.465 364 1270SUNY GH GH GH 1.06 4.466 2.0235 364 1120OBUA GH GH 1138T261 GH GH 1.92 6.87 1.55 169.9 1138T261 GH GH GH 1.84 11.53 2.67 244	1280TAMA	GH	GH	1290BOLG	GH	GH		23.99		243.7
1390DCEM GH GH 1392 AFT GH GH 0.1 0.21 0.05 180 1392 AFT GH GH 3010LOME GH GH 0.273 0.626 0.1365 128.12 1260TECH GH GH 1270SUNY GH GH 1.8 8.36 2.06 244 1260TECH GH GH 1900TESI GH GH 2.36 9.95 4.465 364 1270SUNY GH GH 1413KENY GH GH 1.06 4.466 2.0235 364 11200BUA GH GH 1138T261 GH GH 1.92 6.87 1.55 169.9 1138T261 GH GH GH 1.84 11.53 2.67 244	1280TAMA	GH	GH	1350YEND	GH	GH		15.81	3.621	182
1392 AFT GH GH 3010LOME GH GH 0.273 0.626 0.1365 128.12 1260TECH GH GH 1270SUNY GH GH 1.8 8.36 2.06 244 1260TECH GH GH 1900TESI GH GH 2.36 9.95 4.465 364 1270SUNY GH GH 1413KENY GH GH 1.06 4.466 2.0235 364 11200BUA GH GH 1138T261 GH GH 1.92 6.87 1.55 169.9 1138T261 GH GH GH 1.84 11.53 2.67 244	1300BOGO	GH	GH	1309WEXF	GH	GH	2.382			182
1260TECH GH GH 1270SUNY GH GH 1.8 8.36 2.06 244 1260TECH GH GH 1900TESI GH GH 2.36 9.95 4.465 364 1270SUNY GH GH 1413KENY GH GH 1.06 4.466 2.0235 364 11200BUA GH GH 1138T261 GH GH 1.92 6.87 1.55 169.9 1138T261 GH GH GH 1.84 11.53 2.67 244	1390DCEM	GH	GH	1392 AFT	GH	GH				180
1260TECH GH GH 1900TESI GH GH 2.36 9.95 4.465 364 1270SUNY GH GH 1413KENY GH GH 1.06 4.466 2.0235 364 11200BUA GH GH 1138T261 GH GH 1.92 6.87 1.55 169.9 1138T261 GH GH GH 1.84 11.53 2.67 244	1392 AFT	GH	GH	3010LOME	GH	GH	0.273	0.626	0.1365	128.12
1270SUNY GH GH 1413KENY GH GH 1.06 4.466 2.0235 364 1120OBUA GH GH 1138T261 GH GH 1.92 6.87 1.55 169.9 1138T261 GH GH GH 1.84 11.53 2.67 244	1260TECH	GH	GH	1270SUNY	GH	GH	1.8	8.36	2.06	244
11200BUA GH GH 1138T261 GH GH 1.92 6.87 1.55 169.9 1138T261 GH GH GH 1.84 11.53 2.67 244	1260TECH	GH	GH	1900TESI	GH	GH	2.36	9.95	4.465	364
1138T261 GH GH 1413KENY GH GH 1.84 11.53 2.67 244	1270SUNY	GH	GH	1413KENY	GH	GH	1.06	4.466	2.0235	364
1138T261 GH GH 1413KENY GH GH 1.84 11.53 2.67 244	11200BUA	GH	GH	1138T261	GH	GH		6.87		169.9
										244
					GH					244

Noeud 1	Pays	Zone	Noeud 2	Pays	Zone	Resistance	Reactance	Demi susceptance	Puissance
Nom	Nom	Nom	Nom	Nom	Nom	%pu	%pu	%pu	MVA
1130KUMA	GH	GH	1210N-OB	GH	GH	1.6	6.73	3.55	364
1221ASIE	GH	GH	1310SOGA	GH	GH	14.08	27.32	0.205	57
1221ASIE	GH	GH	1230HO	GH	GH	19.85	38.59	0.29	57
1230HO	GH	GH	1240KPEV	GH	GH	9.93	19.3	0.145	57
1240KPEV	GH	GH	1250KPAN	GH	GH	16.06	31.22	0.235	57
1290BOLG	GH	GH	1480ZEB	GH	GH	1.855	5.533	1.258	182
1480ZEB	GH	GH	BAWKU_04	GH	GH	4.3	12.6	2.84	39
ABOA_330	GH	GH	1029VOLT	GH	GH	0.905	5.67	23.18	1000
1500BUI	GH	GH	1901TES2	GH	GH	0.477	2.01	0.911	364
1500BUI	GH	GH	1900TESI	GH	GH	0.477	2.01	0.911	364
1413KENY	GH	GH	1500BUI	GH	GH	4.48	18.867	8.55	364
1500BUI	GH	GH	1590KIN	GH	GH	1.802	7.592	3.44	364
1380SAWL	GH	GH	1901TES2	GH	GH	6.8	20.31	4.68	182.2
1590KIN	GH	GH	1610BUIP	GH	GH	2.253	9.489	4.3	364
1610BUIP	GH	GH	1280TAMA	GH	GH	2.598	10.941	4.958	364
1590KIN	GH	GH	1260TECH	GH	GH	1.723	7.257	3.289	364
1020VOLT	GH	GH	15533BSP	GH	GH	0.21	1.174	0.276	213.08
15533BSP	GH	GH	1050ACHI	GH	GH	0.6	2.848	0.67	213.08
1020VOLT	GH	GH	15533BSP	GH	GH	0.21	1.174		213.08
15533BSP	GH	GH	1050ACHI	GH	GH	0.6	2.848		213.08
15533BSP	GH	GH	1050ACHI	GH	GH	0.6	2.848		213.08
15533BSP	GH	GH	1020VOLT	GH	GH	0.21	1.174	0.276	213.08
1270SUNY	GH	GH	1278MIM	GH	GH	3.18	9.486		182
KSI330	GH	GH	PRES330	GH	GH	0.728	4.566		1000
1029VOLT	GH	GH	30101LOM	GH	GH	0.631	3.959		1000
1140NKAW	GH	GH	1580N_AB	GH	GH	2.65	7.905	1.811	182.2
1140NKAW	GH	GH	1580N_AB	GH	GH	2.65	7.905	1.811	182.2
1109PRES	GH	GH	1809ELUB	GH	GH	0.85	5.94		327
1600OPB-	GH	GH	1750BONY	GH	GH	1.087	4.577	2.074	364
1750BONY	GH	GH	1800ELUB	GH	GH	1.06	4.466		364
1360ESSI	GH	GH	1750BONY	GH	GH	1.378	5.805	2.631	364
1600OPB-	GH	GH	1750BONY	GH	GH	1.087	4.577		364
1200ASAW	GH	GH	1990AYAN	GH	GH	2.535	5.6		142.05
1990AYAN	GH	GH	1110DUNK	GH	GH	2.535	5.6		142.05
1290BOLG	GH	GH	1620TUMU	GH	GH	7.367	21.976		182.2
1620TUMU	GH	GH	1630HAN	GH	GH	3.18	9.486		182.2
1340WA	GH	GH	1630HAN	GH	GH	3.71	11.067	2.535	182
1340WA	GH	GH	1380SAWL	GH	GH	5.035	15.02		182
1590KIN	GH	GH	1850ATEB	GH	GH	2.386	10.048		364
12951BOL	GH	GH	4ZAGT225	GH	GH	2.298	15.802		327
1220ASIE	GH	GH	1252KPAN	GH	GH	2.25	9.5		364
1255KADJ	GH	GH	1250KPAN	GH	GH	6.061	25.528		156
1413KENY	GH	GH	1200ASAW	GH	GH	1.855	7.815		364
1100PRES	GH	GH	1300BOGO	GH	GH	0.347	1.462		364
1210JUAB	GH	GH	1200ASAW	GH	GH	1.69	7.145		364
1210JUAB	GH	GH	1278MIM	GH	GH	1.99	9.08		364
1020VOLT	GH	GH	1021SME2	GH	GH	0.15	0.75		213.08
1700ASOG	GH	GH	1021SME2	GH	GH	0.0385	0.4758		600
1021SME2 1020VOLT	GH	GH	1700ASOG	GH	GH	0.0385	0.4758		600 212.09
	GH	GH	1021SME2	GH	GH	0.15	0.75		213.08
1020VOLT	GH	GH	1021SME2	GH	GH	0.15	0.75		213.08
1020VOLT	GH	GH	1021SME2	GH	GH	0.15	0.75		213.08
1020VOLT	GH	GH	1021SME2	GH	GH	0.15			213.08
1020VOLT	GH	GH	1021SME2	GH	GH	0.15	0.75 0.75		213.08
1020VOLT	GH	GH	1021SME2	GH	GH	0.15			213.08
1021SME2	GH	GH	1032SMEL	GH	GH	0.016			213.08
1021SME2	GH	GH	1033SMEL	GH	GH	0.016			213.08
1021SME2	GH	GH	1034SMEL	GH	GH	0.016 0.016	0.076		213.08
1021SME2	GH	GH	1035SMEL	GH	GH	0.016			213.08 213.08
1021SME2 1021SME2	GH	GH	1036SMEL	GH GH					
	GH	GH	1031SMEL		GH	0.016			213.08
1021SME2	GH	GH	1470TT1P	GH	GH	0.133	0.558		364
KSI330	GH	GH	1591KIN3	GH	GH	0.757	4.75		1000
1591KIN3	GH	GH	BOLGA330	GH	GH	1.21	7.57		1000
1392 AFT	GH	GH	1390DCEM	GH	GH	0.1	0.21		180
1300BOGO	GH	GH	1309WEXF	GH	GH	2.382	8.121	1.8265	182

Noeud 1	Pays	Zone	Noeud 2	Pays	Zone	Resistance	Reactance	Demi susceptance	Puissance
Nom	Nom	Nom	Nom	Nom	Nom	%pu	%pu	%pu	MVA
1220ASIE	GH	GH	3010LOME	GH	GH	5.33	12.03	5.24	128
1758BON3	GH	GH	PRES330	GH	GH	0.383	2.402	9.809	1000
1470TT1P	GH	GH	1021SME2	GH	GH	0.133	0.558	0.253	364
12951BOL	GH	GH	4KODE225	GH	GH	9.4	22.9	53.7	250
PRES330	GH	GH	RIVIER02	GH	GH	0.9	4.64	42.1	1000
PRES330	GH	GH	1758BON3	GH	GH	0.383	2.402	9.809	1000
1060WINN	GH	GH	1870CAPE	GH	GH	3.297	11.579	2.722	150
1320ABOA	GH	GH	1870CAPE	GH	GH	2.584	9.076	2.134	150
1070C-CO	GH	GH	1870CAPE	GH	GH	0.053	0.223	0.1	364
CAPE330	GH	GH	ABOA_330	GH	GH	0.244	1.53	6.25	1000
1270SUNY	GH	GH	1850BERE	GH	GH	1.193	5.024	2.2777	364
1850BERE	GH	GH	1270SUNY	GH	GH	1.193	5.024	2.2777	364
1758BON3	GH	GH	ABOA_330	GH	GH	0.576	3.62	14.78	1000
1029VOLT	GH	GH	1700ASO2	GH	GH	0.021	0.132	0.539	1000
1029VOLT	GH	GH	1700ASO2	GH	GH	0.021	0.132	0.539	1000
1700ASO2	GH	GH	30101LOM	GH	GH	0.631	3.959	16.169	1000
1010AKOS	GH	GH	1020VOLT	GH	GH	2.12	10.29	2.563	213.08
1020VOLT	GH	GH	15533BSP	GH	GH	0.21	1.174	0.276	213.08
15533BSP	GH	GH	1050ACHI	GH	GH	0.6	2.848	0.67	213.08
PRES330	GH	GH	1115DUNK	GH	GH	0.33	2.06	8.4	1000
1115DUNK	GH	GH	KS1330	GH	GH	0.4	2.5	10.24	1000
1290BOLG	GH	GH	1480ZEB	GH	GH	1.855	5.533	1.258	182
1590KIN	GH	GH	1850ATEB	GH	GH	2.386	10.048	4.553	364
1280TAMA	GH	GH	1350YEND	GH	GH	5.3	15.81	3.621	182
1560A4BS	GH	GH	ABOA_330	GH	GH	0.778	4.882	19.942	1000
1560A4BS	GH	GH	1029VOLT	GH	GH	0.126	0.792	3.234	1000
1561A4BS	GH	GH	1370MALL	GH	GH	0.14	0.54	6.9	364
1561A4BS	GH	GH	1050ACHI	GH	GH	0.14	0.54	6.9	350
SAKETE02	ТВ	BN	IKEJAW02	TB	BN	0.25427	2.158035	13.49217	760
SAKETE02	ТВ	BN	OMOTOS02	TB	BN	0.43416	3.338832	24.90763	760
SAKETE02	ТВ	BN	OMOTOS02	TB	BN	0.43416	3.338832	24.90763	760
3010LOME	ТВ	то	3020MOME	TB	TO	4.05	10.53	1.995	105
3010LOME	ТВ	то	3020MOME	TB	TO	4.05	10.53	1.995	105
3020MOME	ТВ	TO	MA_GLE04	TB	то	8.110001	17.92	3.99	105
3010LOME	ТВ	TO	3LOME161	TB	то	0.8	2.79	0.545	105
3060NANG	ТВ	TO	3BOHI161	TB	то	4.32	13.27	2.85	120
3060NANG	ТВ	TO	3020MOME	ТВ	TO	5.95	18.26	3.925	120
3010LOME	TB	TO	3LOME161	TB	TO	0.8	2.79	0.545	105
3020MOME	ТВ	TO	AVA04	TB	TO	4.05	10.53	2	105
3040SAKA	TB	BN	3030COTO	TB	BN	2.75	8.45	1.98	105
3040SAKA	TB	BN	3030COTO	TB	BN	2.75	8.45	1.98	105
3040SAKA	ТВ	BN	30500NIG	TB	BN	2.31	7.09	1.66	120
3060NANG	ТВ	TO	3ATAK161	TB	TO	1.94	6.24	1.35	120
3KARA161	ТВ	TO	3DJOU161	TB	TO	3.6	9.4	1.338	120
3ATAK161	TB	TO	3KARA161	TB	TO	12.65	37.76	8.7	120
MA_GLE04	ТВ	BN	AVA04	TB	BN	1.94	6.24	1.35	105
3BOHI161	ТВ	BN	30500NIG	TB	BN	4.29	13.22	2.83	120
DAPAON04	ТВ	TO	BAWKU_04	TB	TO	3.4	10.3	2.4	182
3DJOU161	ТВ	BN	PARAKO04	TB	BN	6.67	20.31	9.6	120
3KARA161	ТВ	TO	MANGO_04	ТВ	TO	6.98	21.24	10.04	120
MANGO_04	ТВ	TO	DAPAON04	ТВ	TO	3.82	11.63	5.49	120
MA_GLE04	ТВ	BN	3030COTO	ТВ	BN	0.56	1.71	0.81	120
MA_GLE04	ТВ	BN	3030COTO	ТВ	BN	0.56	1.71	0.81	120
MA_GLE04	ТВ	BN	3030COTO	ТВ	BN	0.56	1.71	0.81	120
MA_GLE04	ТВ	BN	3030COTO	ТВ	BN	0.56	1.71	0.81	120
PARAKO04	ТВ	BN	30500NIG	ТВ	BN	15.28	46.52	21.98	120
3040SAKA	ТВ	BN	MA_GLE04	ТВ	BN	2.31	7.09	1.66	120
3040SAKA	ТВ	BN	MA_GLE04	ТВ	BN	2.31	7.09	1.66	120
3040SAKA	ТВ	BN	TANZOU04	ТВ	BN	1.43	4.34	2.05	120
3040SAKA	ТВ	BN	TANZOU04	ТВ	BN	1.43	4.34		120
PARAKO04	ТВ	BN	BEMBER04	ТВ	BN	4.9	15.1		120
BEMBER04	ТВ	BN	KANDI_04	ТВ	BN	4.2	12.8		120
GUENE_04	ТВ	BN	KANDI_04	ТВ	BN	4.2	12.8		120
GUENE_04	ТВ	BN	MALANV04	ТВ	BN	1.5	4.5		120
3DJOU161	ТВ	BN	NATITI04	ТВ	BN	4.2	12.8		120
30101LOM	ТВ	TO	SAKETE02	ТВ	TO	2.6			760
					. •	2.0	12.0	172.2	, 50

Noeud 1	Pays	Zone	Noeud 2	Pays	Zone	Resistance	Reactance	Demi susceptance	Puissance
Nom	Nom	Nom	Nom	Nom	Nom	%pu	%pu	%pu	MVA
ADJARA04	ТВ	то	AVA04	ТВ	TO	2.31	7.09	1.66	120
3060NANG	ТВ	то	ADJARA04	ТВ	то	4.29	13.22	2.83	120
30500NIG	ТВ	BN	3040SAKA	ТВ	BN	2.31	7.09	1.66	120
ADJARA04	ТВ	TO	AVA04	ТВ	TO	2.31	7.09	1.66	120
GAZAOU06	NR	CE	KATSIN06	NR	CE	8.55372	17.06612	1.73689	91.5
MARADI06	NR	CE	GAZAOU06	NR	CE	10.6	21.1	2.1	91.5
GAZAOU06	NR	CE	ZINDER06	NR	CE	14.2	28.4	2.9	91.5
DOSSO_06	NR	FL	NIAM2C06	NR	FL	12.557	31.3636	3.369	95.34
NIAM2C06	NR	FL	NIAM2_06	NR	FL	0	-47	0	96
DOSSO_06	NR	FL	FRONT_06	NR	FL	7.42	18.5331	1.991	95.34
FRONT_06	NR	FL	BIRNIN06	NR	FL	5.1369	12.8306	1.378	95.34
DOSSO02	NR	FL	NIAMRD02	NR	FL	0.501372	4.25528	26.60427	777
ZABORI02	NR	FL	MALANV02	NR	FL	0.272174	2.31	14.44232	777
NIAMRD02	NR	FL	OUAGAE02	NR	FL	1.679598	14.25519	89.12431	777
DOSSO02	NR	FL	ZABORI02	NR	FL	0.186224	1.580532	9.881586	777
DOSSO02	NR	FL	SALKAD02	NR	FL	1.07437	9.118457	57.00915	777
SALKAD06	NR	FL	MARADI06	NR	FL	30.44121	76.03297	8.167273	95.34
NIAM2_06	NR	FL	NIAMRD06	NR	FL	0.475644	1.188015	0.127614	95.34
NIAM2_06	NR	FL	NIAMRD06	NR	FL	0.475644	1.188015	0.127614	95.34
KANDAD06	NR	FL	NIAM2_06	NR	FL	7.42	18.5331	1.991	95.34
KANDAD06	NR	FL	NIAM2_06	NR	FL	7.42	18.5331	1.991	95.34
AJA02	NI	LA	EGBIN_02	NI	LA	0.05065	0.38953	2.90589	777
AJA02	NI	LA	EGBIN_02	NI	LA	0.05065	0.38953	2.90589	777
EGBIN_02	NI	LA	IKEJAW02	NI	LA	0.22432	1.72507	12.86893	777
EGBIN_02	NI	LA	IKEJAW02	NI	LA	0.25326	1.94766	14.52944	777
JEBBAP02	NI	SH	JEBBA_02	NI	SH	0.02894	0.22259	1.66051	777
JEBBAP02	NI	SH	JEBBA_02	NI	SH	0.02894	0.22259	1.66051	777
KATAMP02	NI	SH	SHIROR02	NI	SH	0.5427	4.17355	31.13451	777
KATAMP02	NI	SH	SHIROR02	NI	SH	0.5427	4.17355	31.13451	777
BENINC02	NI	BE	DELTA_02	NI	BE	0.38713	2.97713	22.20928	777
BENINC02	NI	BE	SAPELE02	NI	BE	0.1809	1.39118	10.37817	777
BENINC02	NI	BE	SAPELE02	NI	BE	0.1809	1.39118	10.37817	777
BENINC02	NI	BE	SAPELE02	NI	BE	0.1809	1.39118		777
BENINC02	NI	BE	EGBIN_02	NI	BE	0.95877	7.37328	55.0043	777
OMOTOS02	NI	BE	IKEJAW02	NI	BE	0.573003	4.863177	30.40488	760
KWALE_02	NI	EN	ONITSH02	NI	EN	0.28944	2.2259	16.60507	777
KWALE_02	NI	EN	ONITSH02	NI	EN	0.28944	2.2259	16.60507	777
AFAM02	NI	EN	ALAOJI02	NI	EN	0.09045	0.69559	5.18909	777
AFAM02	NI	EN	ALAOJI02	NI	EN	0.09045	0.69559	5.18909	777
AKANGB02	NI	LA	IKEJAW02	NI	LA	0.06446	0.54711	3.42055	777
AKANGB02	NI	LA	IKEJAW02	NI	LA	0.06446	0.54711	3.42055	777
IKEJAW02	NI	LA	OSHOGB02	NI	LA	0.8416	7.14279	44.65717	777
BIRNIN02	NI	SH	KAINJI02	NI	SH	1.12158	8.625316		777
JEBBA_02	NI	SH	KAINJI02	NI	SH	0.29008	2.46198		777
JEBBA_02	NI	SH	KAINJI02	NI	SH	0.29008	2.46198		777
JEBBA_02	NI	SH	ZUNGER02	NI	SH	0.6	4		777
JEBBA_02	NI	SH	ZUNGER02	NI	SH	0.6	4 77400		777
JEBBA_02	NI	SH	OSHOGB02	NI	SH	0.56226			777
JEBBA_02	NI	SH	OSHOGB02	NI	SH	0.56226		29.83479	777
KADUNA02	NI	KD	KANO02	NI	KD	0.82369	6.99082	43.70702	777
KADUNA02	NI	KD	SHIROR02	NI	KD	0.34022	2.88751	18.0529	777
KADUNA02	NI	KD	SHIROR02	NI	KD	0.34022	2.88751	18.0529	777
GOMBE_02	NI	BA	JOS02	NI	BA	0.94904	8.05464		777
GOMBE_02	NI	BA	YOLA_02	NI	BA	0.82369	6.99082	43.70702	777
JOS02	NI	BA	KADUNA02	NI	BA	0.70551	5.98779		777
AJAOKU02	NI	BE	BENINN02	NI	BE	0.69835	5.927	37.05595	777
AJAOKU02	NI	BE	BENINN02	NI	BE	0.69835	5.927	37.05595	777
ALADJA02	NI	BE	DELTA_02	NI	BE	0.1146	0.97264		777
ALADJA02	NI	BE	SAPELE02	NI	BE	0.22562	1.91488		777
BENINC02	NI	BE	ONITSH02	NI	BE	0.49063	4.1641	26.03418	777
BENINC02	NI	BE	ONITSH02	NI	BE	0.49063	4.1641		777
BENINC02	NI	BE	OSHOGB02	NI	BE	0.8989	7.62911		777
NEWHAV02	NI	EN	ONITSH02	NI	EN	0.3438	2.91791	18.24293	777
ALAOJI02	NI	EN	IKOTEK02	NI	EN	0.137484	1.0573		777
ALAOJI02	NI	EN	ONITSH02	NI	EN	0.49421	4.19449		777
AIYEDE02	NI	LA	OSHOGB02	NI	LA	0.42617	3.61699	22.61363	777

Noeud 1	Pays	Zone	Noeud 2	Pays	Zone	Resistance	Reactance	Demi susceptance	Puissance
Nom	Nom	Nom	Nom	Nom	Nom	%pu	%pu	%pu	MVA
KANKIA06	NI	KD	KATSIN06	NI	KD	8.18412	16.3287	1.66184	91.5
KANKIA06	NI	KD	KANO_06	NI	KD	13.42853	26.7922	2.72676	91.5
IKEJAW02	NI	LA	BENINC02	NI	LA	1.01304	7.79063	58.11775	777
GOMBE_02	NI	BA	YOLA02	NI	BA	0.82369	6.99082	43.70702	777
MAMBIL01	NI	BA	MAKURD01	NI	BA	0.234697	3.244979	751.2357	2598
ERUNKA01	NI	LA	OSHOGB01	NI	LA	0.038028	0.525782	121.7223	2598
OSHOGB01	NI	LA	BENINN01	NI	LA	0.096414	1.333044	308.6091	2598
BENINN01	NI	BE	EGBEMA01	NI	BE	0.09603	1.327733	307.3796	2598
BENINN01	NI	BE	AJAOKU01	NI	BE	0.074903	1.035632	239.7561	2598
AJAOKU01	NI	BE	MAKURD01	NI	BE	0.117156	1.619834	375.0031	2598
AJAOKU01	NI	BE	ABUJA_01	NI	BE	0.079897	1.104674	255.7398	2598
JALING01	NI	BA	MAMBIL01	NI	BA	0.234697	3.244979	751.2357	2598
JALING01	NI	BA	GOMBE_01	NI	BA	0.134058	1.853515	429.1019	2598
ABUJA_01	NI	SH	KADUNA01	NI	SH	0.092189	1.274623	295.0844	2598
KADUNA01	NI	KD	KANO01	NI	KD	0.088347	1.221514	282.7892	2598
IKEJAW02	NI	LA	ERUNKA02	NI	LA	0.114601	0.972635	6.080976	760
ERUNKA02	NI	LA	EGBIN_02	NI	LA	0.107438	0.911846	5.700915	760
JEBBA_02	NI	SH	GANMO_02	NI	SH	0.250689	2.12764	13.30214	760
GANMO_02	NI	LA	OSHOGB02	NI	LA	0.31157	2.644353	16.53265	760
PAPALA02	NI	LA	AIYEDE02	NI	LA	0.214876	1.823691	11.40183	760
PAPALA02	NI	LA	IKEJAW02	NI	LA	0.10854	0.834708	6.226908	760
ALAGBO02	NI	LA	AJA02	NI	LA	0.094068	0.723416	5.396648	760
ALAGBO02	NI	LA	AJA02	NI	LA	0.094068	0.723416	5.396648	760
GWAGWA02	NI	SH	LOKOJA02	NI	SH	0.50652	3.895317	29.05888	760
LOKOJA02	NI	SH	AJAOKU02	NI	SH	0.137484	1.0573	7.887409	760
GWAGWA02	NI	SH	LOKOJA02	NI	SH	0.50652	3.895317	29.05888	760
LOKOJA02	NI	SH	AJAOKU02	NI	SH	0.137484	1.0573	7.887409	760
GWAGWA02	NI	SH	KATAMP02	NI	SH	0.10854	0.834711	6.226902	760
KATAMP02	NI	SH	GWAGWA02	NI	SH	0.10854	0.834711	6.226902	760
GWAGWA02	NI	SH	SHIROR02	NI	SH	0.412452	3.171901	23.66223	760
SHIROR02	NI	SH	GWAGWA02		SH	0.412452	3.171901	23.66223	760
OMOTOS02	NI	BE	BENINC02	NI	BE	0.429752	3.647383	22.80366	760
BENINN02	NI	BE	AJAOKU02	NI	BE	0.69835	5.927	37.05595	777
BENINN02	NI	BE	BENINC02	NI	BE	0.071625	0.607897	3.80061	760
BENINN02	NI	BE	BENINC02	NI	BE	0.071625	0.607897	3.80061	760
BENINN02	NI	BE	BENINC02	NI	BE	0.071625	0.607897	3.80061	760
ONITSH02	NI	EN	OWERRI02	NI	EN	0.495666	3.811846	28.43619	760
ONITSH02	NI	EN	OWERRI02	NI	EN	0.495666	3.811846	28.43619	760
OWERRI02	NI	EN	ALAOJI02	NI	EN	0.21708	1.669421	12.4538	760
OWERRI02	NI	EN	ALAOJI02	NI	EN	0.21708	1.669421	12.4538	760
OWERRI02	NI	EN	EGBEMA02	NI	EN	0.10854	0.834711	6.226902	760
OWERRI02	NI	EN	EGBEMA02	NI	EN	0.10854		6.226902	760
EGBEMA02	NI	EN	OMOKU_02	NI	EN	0.10854	0.834711	6.226902	760
EGBEMA02	NI	EN	OMOKU_02	NI	EN	0.10854	0.834711	6.226902	760
NEWHAV02	NI	EN	NEWHAS02	NI	EN	0.01809	0.139118		760
NEWHAV02	NI	EN	NEWHAS02	NI	EN	0.01809	0.139118		760
NEWHAS02	NI	EN	ALIADE02	NI	EN	0.5427	4.173554		760
ALIADE02	NI	EN	NEWHAS02	NI	EN	0.5427	4.173554		760
MAKURDO6	NI	EN	ALIADE02	NI	EN	0.1809	1.391185	10.37817	760
MAKURD06	NI	EN	ALIADE02	NI	EN	0.1809	1.391185	10.37817	760
NEWHAS02	NI	EN	IKOTEKO2	NI	EN	0.517374	3.978788		760 760
NEWHAS02	NI	EN	IKOTEK02	NI	EN	0.517374	3.978788		760
IKOTEK02	NI	EN	AFAM_02	NI	EN	0.32562	2.504132	18.68071	760 760
IKOTEKO2	NI	EN	AFAM_02	NI	EN	0.32562	2.504132	18.68071	760 760
IKOTEKO2	NI	EN	IKOTAB02	NI	EN	0.27135	2.086777	15.56726	760 760
IKOTEK02	NI NI	EN	AEAM 02	NI	EN	0.27135	2.086777	15.56726	760 760
PORTHA02 PORTHA02	NI	EN EN	AFAM_02	NI NI	EN	0.16281 0.16281	1.252066		760
	NI	BA	DAMATU02		BA		1.252066		760
GOMBE_02	NI			NI		0.483471	4.103306		760
DAMATU02		BA	MAIDUG02	NI	BA	0.501377	4.25528		
YOLA02	NI	BA	JALING02	NI	BA	0.472727	4.012121	25.08403	760
AJAOKU02	NI	BE	GEREGU02	NI	BE	0.01809	0.139118		760
AJAOKU02	NI	BE	GEREGU02	NI	BE	0.01809	0.139118		760 760
BENINNO2	NI	BE	EYAEN_02	NI	BE	0.01809	0.139118		760 760
BENINN02	NI	BE	EYAEN_02	NI	BE	0.01809	0.139118		760
OWERRI02	NI	EN	AHOADA02	NI	EN	0.824518	2.627732	11.65823	126

Noeud 1	Pays	Zone	Noeud 2	Pays	Zone	Resistance	Reactance	Demi susceptance	Puissance
Nom	Nom	Nom	Nom	Nom	Nom	%pu	%pu	%pu	MVA
OWERRI02	NI	EN	AHOADA02	NI	EN	0.824518	2.627732	11.65823	126
AHOADA02	NI	EN	YENAGO02	NI	EN	0.519559	1.655831	7.346285	126
AHOADA02	NI	EN	YENAGO02	NI	EN	0.519559	1.655831	7.346285	126
YENAGO02	NI	EN	GBARAN02	NI	EN	0.056474	0.179982	0.798509	126
YENAGO02	NI	EN	GBARAN02	NI	EN	0.056474	0.179982	0.798509	126
MAKURD06	NI	EN	JOS02	NI	EN	0.83214	6.399449	47.73958	760
JOS02	NI	BA	MAKURD06	NI	BA	0.83214	6.399449	47.73958	760
BIRNIN02	NI	SH	SOKOTO02	NI	SH	0.47034	3.61708	26.98324	760
BIRNIN02	NI	SH	SOKOTO02	NI	SH	1.11019	9.42241	58.90946	777
KADUNA02	NI	KD	JOS02	NI	KD	0.70551	5.98779	37.43601	777
KANO 02	NI	KD	KATSIN02	NI	KD	0.65124	5.008264	37.36141	760
KANO 02	NI	KD	KATSIN02	NI	KD	0.65124	5.008264	37.36141	760
KANO 02	NI	KD	KADUNA02	NI	KD	0.83214		47.73963	777
BIRNIN02	NI	SH	KAINJI02	NI	SH	1.12158	8.625316	64.34472	777
JOS 02	NI	BA	GOMBE_02	NI	BA	0.955152	7.34543	54.79679	777
GOMBE 02	NI	BA	DAMATU02	NI	BA	0.483471	4.103306	25.65412	760
DAMATU02	NI	BA	MAIDUG02	NI	BA	0.50652	3.895304		760
JALING02	NI	BA	YOLA 02	NI	BA	0.472727	4.012121	25.08403	760
BIRNINO2	NI	SH	ZABORI02	NI	SH	0.339143	2.878393	17.99589	777
ALAOJI02	NI	EN	IKOTEK02	NI	EN	0.137484	1.0573	7.887409	777
IKOTEK02	NI	EN	CALABA02	NI	EN	0.260496	2.003306	14.94457	777
IKOTEK02	NI	EN	CALABA02	NI	EN	0.260496	2.003306	14.94457	777
BENINN02	NI	BE	OSHOGB02	NI	BE	0.835758	6.427252	47.94719	777
OSHOGB02	NI	LA	BENINN02	NI	LA	0.835758	6.427252	47.94719	777
	NI	BE	ONITSH02	NI	BE			28.43621	777
BENINCO2	NI		ONITSH02	NI		0.49566	3.811833		
BENINC02		BE			BE	0.49566	3.811833	28.43621	777
OMOTOS02	NI	BE	EPE02	NI	BE	0.30753	2.365006	17.64291	760
OMOTOS02	NI	BE	EPE02	NI	BE	0.30753	2.365006	17.64291	760
EPE02	NI	LA	AJA02	NI	LA	0.1809	1.39118	10.37818	760
EPE02	NI	LA	AJA02	NI	LA	0.1809	1.39118		760
OMOTOS02	NI	BE	ERUNKA02	NI	BE	0.477576	3.672715	27.3984	760
OMOTOS02	NI	BE	ERUNKA02	NI	BE	0.477576	3.672715	27.3984	760
ONITSH02	NI	EN	NNEWI_02	NI	EN	0.14472	1.112944	8.302544	760
ONITSH02	NI	EN	NNEWI_02	NI	EN	0.14472	1.112944	8.302544	760
NNEWI_02	NI	EN	OWERRI02	NI	EN	0.12663	0.973826	7.264726	760
NNEWI_02	NI	EN	OWERRI02	NI	EN	0.12663	0.973826	7.264726	760
DELTA_02	NI	BE	PORTHA02	NI	BE	0.625914	4.813483	35.9085	126
DELTA_02	NI	BE	PORTHA02	NI	BE	0.625914	4.813483	35.9085	126
IKEJAW02	NI	LA	PAPALA02	NI	LA	0.10854	0.834708	6.226908	760
SOKOTO02	NI	SH	GUSAU_02	NI	SH	0.66933	5.147366	38.39927	760
SOKOTO02	NI	SH	GUSAU_02	NI	SH	0.66933	5.147366	38.39927	760
GUSAU_02	NI	KD	ZARIA_02	NI	KD	0.68742	5.286484	39.43708	760
GUSAU_02	NI	KD	ZARIA_02	NI	KD	0.68742	5.286484	39.43708	760
ZARIA_02	NI	KD	KADUNA02	NI	KD	0.27135	2.08677	15.56727	760
ZARIA_02	NI	KD	KADUNA02	NI	KD	0.27135	2.08677	15.56727	760
KADUNA02	NI	KD	KANO02	NI	KD	0.83214	6.399428	47.73963	777
JOS02	NI	BA	GOMBE_02	NI	BA	0.955152	7.34543	54.79679	777
DAMATU02	NI	BA	MAIDUG02	NI	BA	0.50652	3.895304	29.0589	760
ZUNGER02	NI	SH	SHIROR02	NI	SH	0.27383	3.41635	16.36744	777
ZUNGER02	NI	SH	SHIROR02	NI	SH	0.27383	3.41635	16.36744	777
MAMBIL01	NI	ВА	MAKURD01	NI	ВА	0.234697	3.244979	751.2357	2598
MAMBIL01	NI	BA	JALING01	NI	BA	0.234697	3.244979	751.2357	2598
IKEJAW02	NI	LA	AKANGB02	NI	LA	0.06446	0.54711	3.42055	777

This document is the property of Tractebel Engineering S.A. Any duplication or transmission to third parties is forbidden without prior written approval

8.5. Couplages

Noeud 1	Noeud 2						
NIAM22_D	NIAM21_D	1052ACH	1053ACH	1121AOBU	1121BOBU	1072C-CO	1071BCCO
DIFFA_02	MAIDUG02	1053ACH	1054ACH	1121BOBU	1121COBU	1092ATAR	1092BTAR
KAHO2_03	KAOLAC03	1054ACH	1055ACH	1162AKWA	1161AKWA	1181AKON	1181BKON
KAHO1_03	KAOLAC03	1152TAFO	1151TAF0	1273SUNY	1272SUNY	1211ANOB	1211BNOB
CAPEBI08	GTIIPP08	1041T-LV	1042T-LV	1371MALL	1372MALL	1211BNOB	1211CNOB
MAURIT03	DAGANA03	1061BWIN	1061AWIN	15543BLV	15553BLV	1281ATAM	1282ATAM
1132KUMA	1131KUMA	1281ATAM	1281BTAM	11391K2L	11392K2L	1412KENY	1414KENY
1132KUMA	1133KUM1	1081TAKO	1082TAKO	1998AYAN	1995AYAN		
1133KUM1	1133KUM2	1122AOBU	1122BOBU	1201ASAW	1202ASAW		
1051ACH	1052ACH	1122BOBU	1122COBU	1070C-CO	1070CCO3		

8.6. Transformateurs

Noeud 1	Noeud 2	V 1	V 2	SN	Zcc	Noeud 1	Noeud 2	V 1	V 2	SN	Zcc
Nom	Nom	kV	kV	MVA	%pu	Nom	Nom	kV	kV	MVA	%pu
IKOTAB06	IBOMGT01	132	11.5	45	11.2	KAINJI02	KAING05	330	16	145	12.4
IKOTAB06	IBOMGT02	132	11.5	45	11.2	KAINJI02	KAING06	330	16	145	12.4
IKOTAB06	IBOMGT03	132	15	142	11.2	KAINJI02	KAING07	330	16	92	12
AFAM02	AFAMGT13	330	10.5	110	8.0	KAINJI02	KAING08	330	16	92	12
AFAM_02	AFAMGT14	330	10.5	110	8.0	KAINJI02	KAING09	330	16	92	12
AFAM_02	AFAMGT15	330	11.5	110	8.0	KAINJI02	KAING10	330	16	92	10.8
AFAM 02	AFAMGT16	330	11.5	110	8.0	KAINJI02	KAING11	330	16	115	11.7
AFAM 02	AFAMGT17	330	11.5	110	8.0	KAINJI02	KAING12	330	16	115	11.7
AFAM 02	AFAMGT18	330	11.5	110	8.0	SHIROR02	SHIRGH1	330	15.65	200	12.85
AFAM 02	AFAMGT19	330	15.75	165	13.0	SHIROR02	SHIRGH2	330	15.65	200	12.85
AFAM 02	AFAMGT20	330	15.75	165	13.0	SHIROR02	SHIRGH3	330	15.65	200	12.85
AFAM_02	AFAM6GT1	330	15	163	13.0	SHIROR02	SHIRGH4	330	15.65	200	12.85
AFAM 02	AFAM6GT2	330	15	163	13.0	KWALE 02	KWALCC1	330	15.75	200	12.85
AFAM 02	AFAM6GT3	330	15	163	13.0	KWALE 02	KWALCC2	330	15.75	200	12.85
AFAM 02	AFAM6GT4	330	15	163	13.0	KWALE 02	KWALCC3	330	15.75	200	12.85
AFAM 02	AFAM6GT5	330	15	163	13.0	BIRNIN02	BIRNT1	330	1	109	12.15
DELTA 06	DELTAG03	132	11.5	81	10.0	BIRNIN06	BIRNT1	132	1	90	-0.1118
DELTA_06	DELTAGOS DELTAGO4	132	11.5	81	10.0	DELTA 02	DELTT1	330	1	150	12
											-1.99745
DELTA_06	DELTA COC	132	11.5	81	10.0	DELTA_06	DELTT1	132	1	150	
DELTA_06	DELTAG06	132	11.5	81	10.0	EGBIN_02	EGBINT1	330	1	150	12
DELTA_06	DELTAG07	132	11.5	81	10.0	EGBIN_06	EGBINT1	132	1	150	-1.99745
DELTA_06	DELTAG08	132	11.5	81	10.0	EGBIN_02	EGBINT2	330	1	150	12
DELTA_06	DELTAG09	132	11.5	81	10.0	EGBIN_06	EGBINT2	132	1	150	-1.99745
DELTA_06	DELTAG10	132	11.5	81	10.0	SAPELE02	SAPELST6	330	15.75	400	14.4998
DELTA_06	DELTAG11	132	11.5	81	10.0	SAPELE02	SAPELST5	330	15.75	400	14.4998
DELTA_06	DELTAG12	132	11.5	81	10.0	SAPELE02	SAPELST4	330	15.75	400	14.4998
DELTA_06	DELTAG13	132	11.5	81	10.0	SAPELE02	SAPELST3	330	15.75	400	14.4998
DELTA_06	DELTAG14	132	11.5	81	10.0	SAPELE02	SAPELST2	330	15.75	400	14.4998
DELTA_02	DELTAG15	330	11.5	120	7.8	SAPELE02	SAPELST1	330	15.75	400	14.4998
DELTA_02	DELTAG16	330	11.5	120	7.8	KANO02	KANOT1A	330	1	450	12
DELTA_02	DELTAG17	330	11.5	120	7.8	KANO02	KANOT1A	330	1	450	12
DELTA_02	DELTAG18	330	11.5	120	7.8	KANO06	KANOT1A	132	1	450	-1.99745
DELTA_02	DELTAG19	330	11.5	120	7.8	KANO06	KANOT1A	132	1	450	-1.99745
DELTA_02	DELTAG20	330	11.5	120	7.8	KANO01	KANO02	760	330	1000	10
EGBIN_02	EGBINST1	330	16	270	10.2	KADUNA01	KADUNA02	760	330	1000	10
EGBIN_02	EGBINST2	330	16	270	10.2	AJAOKU01	AJAOKU02	760	330	1000	10
EGBIN_02	EGBINST3	330	16	270	10.2	BENINN01	BENINN02	760	330	1000	10
EGBIN_02	EGBINST4	330	16	270	10.2	OSHOGB01	OSHOGB02	760	330	1000	10
EGBIN_02	EGBINST5	330	16	270	10.2	GOMBE_01	GOMBE_02	760	330	1000	10
EGBIN_02	EGBINST6	330	16	270	10.2	ERUNKA01	ERUNKA02	760	330	1000	10
EGBIN_06	EGBINGT1	132	10.5	38.6	10.0	EGBEMA01	EGBEMA02	760	330	1000	10
EGBIN 06	EGBINGT2	132	10.5	38.6	10.0	MAKURD01	MAKURD06	760	330	1000	10
EGBIN 06	EGBINGT3	132	10.5	38.6	10.0	JALING01	JALING02	760	330	1000	10
EGBIN 06	EGBINGT4	132	10.5	39.5	10.0	CALABA02	CALABGT1	330	15	142	13
EGBIN 06	EGBINGT5	132	10.5	39.5	10.0	CALABA02	CALABGT2	330	15	142	13
EGBIN 06	EGBINGT6	132	10.5	39.5	10.0	CALABA02	CALABGT3	330	15	142	13
EGBIN 06	EGBINGT7	132	10.5	40.5	10.0	CALABA02	CALABGT4	330	15	142	13
EGBIN 06	EGBINGT8	132	10.5	40.5	10.0	CALABA02	CALABGT5	330	15	142	13
EGBIN 06	EGBINGT9	132	10.5	40.5	10.0	EGBEMA02	EGBEMGT1	330	15	142	13
JEBBAP02	JEBBGH1	330	16	119	10.4	EGBEMA02	EGBEMGT2	330	15	142	13
JEBBAP02 JEBBAP02	JEBBGH2	330	16	119	10.4	EGBEMA02	EGBEMGT3	330	15	142	13
JEBBAP02 JEBBAP02	JEBBGH3	330	16	119	10.4	OMOTOS02	OMOTGT12	330	10.5	105	14.4
JEBBAP02	JEBBGH4	330	16	119	10.4	OMOTOS02	OMOTGT34	330	10.5	105	14.4
JEBBAP02	JEBBGH5	330	16	119	10.4	OMOTOS02	OMOTGT56	330	10.5	105	14.4
JEBBAP02	JEBBGH6	330	16	119	10.4	OMOTOS02	OMOTGT78	330	10.5	105	14.4

Noeud 1	Noeud 2	V 1	V 2	SN	Zcc	Noeud 1	Noeud 2	V 1	V 2	SN	Zcc
Nom	Nom	kV	kV	MVA	%pu	Nom	Nom	kV	kV	MVA	%pu
OMOTOS02	OMOT2GT1	330	15	157	13	MATOTO_D	MATOTO07	60	110	25	5.6
OMOTOS02	OMOT2GT2	330	15	157	13	MATOTO_D	MATOTO07	60	110	25	5.6
OMOTOS02	OMOT2GT3	330	15	157	13	MATOTO_D	MATOTO07	60	110	25	5.6
OMOTOS02	OMOT2GT4	330	15	157	13	TOMBO D	MATOTO D	20	60	50	11.9
PAPALA02	PAPA2GT1	330	15	157	13	TOMBO D	MATOTO D	20	60	50	11.9
PAPALA02	PAPAGT12	330	10.5	105	14.4	TOMBO D	TB3G1	20	6.3	16	10.5
PAPALA02	PAPAGT34	330	10.5	105	14.4	TB3G2	TOMBO D	6.3	20	16	10.5
PAPALA02	PAPAGT56	330	10.5	105	14.4	TOMBO D	TB3G3	20	6.3	16	10.5
PAPALA02	PAPAGT78	330	10.5	105	14.4	TB3G4		6.3	20	16	10.5
							TOMBO_D				_
PAPALA02	PAPA2GT2	330	15	157	13	TB5G3	TOMBO_D	11	20	13.75	10
PAPALA02	PAPA2GT3	330	15	157	13	MANEAH_D	MANEAHG1	60	11	52.5	10
PAPALA02	PAPA2GT4	330	15	157	13	MANEAH_D	MANEAHG2	60	11	52.5	10
ALAOJI02	ALAOJGT1	330	15	157	13	MANEAH_D	MANEAHG3	60	11	52.5	10
ALAOJI02	ALAOJGT2	330	15	157	13	TB5G1	TOMBOD	11	20	13.75	10
ALAOJI02	ALAOJGT3	330	15	157	13	TOMBOD	TB5G2	20	11	13.75	10
ALAOJI02	ALAOJGT4	330	15	157	13	GRCHUT D	GRCHUT07	60	110	12.5	10.4
ALAOJI02	ALAOCCG1	330	17	356	13	DONKEA07	DONKEA D	110	15	15	10
ALAOJI02	ALAOCCG2	330	17	356	13	LINSAN03	LINSAN07	225	110	75	10
GEREGU02		330	15.75	168	16.07			225	110	75	10
	GEREGGT1					LINSAN03	LINSAN07	_			_
GEREGU02	GEREGGT2	330	15.75	168	16.07	GARAFI07	GARAFIG1	110	5.65	31.5	9.98
GEREGU02	GEREGGT3	330	15.75	168	16.07	GARAFI07	GARAFIG2	110	5.65	31.5	9.98
GEREGU02	GEREGGT4	330	15.75	168	16.07	DONKEAG2	DONKEA07	6.3	110	8.5	10
GEREGU02	GEREGGT5	330	15.75	168	16.07	BANEAHG1	BANEAH_D	3.15	15	2.78	6
GEREGU02	GEREGGT6	330	15.75	168	16.07	DONKEAG1	DONKEA07	6.3	110	8.5	10
EYAEN 02	EYAENGT3	330	15	142	13	BANEAHG2	BANEAH D	3.15	15	2.78	6
EYAEN 02	EYAENGT4	330	15	142	13	GRCHUTG3	GRCHUT D	5.5	60	11	8
											_
EYAEN_02	EYAENGT1	330	15	142	13	GRCHUT_D	GRCHUTG4	60	5.5	11	8
EYAEN_02	EYAENGT2	330	15	142	13	GRCHUTG2	GRCHUT_D	3.3	60	6.3	6.5
GBARAN06	GBARAGT1	132	15	142	13	GARAFI07	GARAFIG3	110	5.65	31.5	9.98
GBARAN06	GBARAGT2	132	15	142	13	GRCHUTG1	GRCHUT_D	3.3	60	6.3	6.5
ABUJA_01	KATAMP02	760	330	1000	10	BUMBUN04	BUMBU1G1	161	13.8	31.25	10
SAPELE02	SAPELGT4	330	15	142	13	BUMBUN04	BUMBU1G2	161	13.8	31.25	10
SAPELE02	SAPELGT2	330	15	142	13	BUMBUN04	BUMBUN2G	161	13.8	50	10
		330	15	142	13			66	33	20	10
SAPELEO2	SAPELGT3					MONROV09	MONROV_D				_
SAPELE02	SAPELGT1	330	15	142	13	MONROV09	MONROV_D	66	33	20	10
KOTAB02	IKOTAGT1	330	15	142	13	MONROV09	MTCOFFG1	66	10.5	20.62	10
KOTAB02	IKOTAGT2	330	15	142	13	MONROV09	MTCOFFG2	66	10.5	20.62	10
KOTAB02	IKOTAGT3	330	15	142	13	MONROV09	MTCOFFG3	66	10.5	20.62	10
KOTAB02	IKOTABT1	330	1	150	12	MONROV09	MTCOFFG4	66	10.5	20.62	10
KOTAB02	IKOTABT1	330	1	150	12	TOBENE08	TOBENE03	90	225	75	7.49
КОТАВО6	IKOTABT1	132	1	150	-1.99745	TOBENE08	TOBENE03	90	225	75	7.49
KOTAB06	IKOTABT1	132	1	150	-1.99745	KAHO2 03	KAHONE2G	225	15	50	13.25
KOTAB06	ALSCOGT1	132	15	142	13	KAHO1_03	KAHONE1G	225	15	50	13.25
KOTAB06	ALSCOGT2	132	15	142	13	BELAIR11	BELAIR08	15	90	50	14.93
KOTAB06	ALSCOGT3	132	15	142	13	BELAIR11	BELAIR08	15	90	50	14.93
KOTAB06	ALSCOGT4	132	15	142	13	BELAIR1G	BELAIR08	11	90	37	13.6
КОТАВО6	ALSCOGT5	132	15	142	13	CAPEBI9G	CAPEBI08	6.6	90	33	4.09
котаво6	ALSCOGT6	132	15	142	13	CAPEBI8G	CAPEBI08	6.6	90	36	4.61
OMOKU 02	OMOKU T1	330	1	150	12	CAPEBI7G	CAPEBI08	6.6	90	35	4.55
		132	1	150	-1.99745			6.6	90	26.48	_
OMOKU_06	OMOKU_T1					CAPEBI6G	CAPEBI08				2.86
OMOKU_02	OMOKUGT2	330	15	142	13	CAPEBI5G	CAPEBI08	6.6	90	26.48	2.86
OMOKU_02	OMOKUGT1	330	15	142	13	CAPEBI4G	CAPEBI08	6.6	90	30	3.33
OMOKU_06	OMOKURG1	132	11.5	62.5	11.2	CAPEBI1G	CAPEBI08	11	90	40	4.8
CATSIN02	KATSINT1	330	1	450	12	CAPEBI3G	CAPEBI08	6.6	90	27	2.89
KATSINT1	KATSIN06	1	132	450	-1.99745	CAPEBI2G	CAPEBI08	6.6	90	30	3.3
OMOKU 06	OMOKURG2	132	11.5	62.5	11.2	KOUNOU11	KOUNOU08	15	90	40	4.78
GBARAN02	GBARANT1	330	1	150	12	KOUNOU11	KOUNOU08	15	90	40	4.78
	GBARANT1	132	1	150	-1.99745	GTI 1G	GTIIPP08	11	90		9.88
GBARAN06										76	
KOTAB02	IKOTABT2	330	1	150	12	MATAM_08	MATAM_03	90	225	20	2.04
KOTAB06	IKOTABT2	132	1	150	-1.99745	MATAM_08	MATAM_03	90	225	20	2.04
NIAM2_06	NIAM22_D	132	20	20	9.8533	SAKAL_10	SAKAL_03	30	225	20	2.05
NIAM2_06	NIAM22_D	132	20	20	9.8533	SAKAL_10	SAKAL_03	30	225	20	2.05
VIAM2_06	NIAM21_D	132	20	20	9.8533	SAKAL_10	SAKAL_03	30	225	20	2.05
NIAM2C06	NIAM2C D	132	20	30	14	MANANT5G	MANANT03	11	225	47	5.88
VIAMRD02	NIAMRD06	330	132	150	12.15	MANANT4G	MANANT03	11	225	47	5.88
	NIAMRD06										
NIAMRD02		330	132	150	12.15	MANANT3G	MANANT03	11	225	47	5.88
SALKAD02	SALKAD06	330	132	150	12.15	MANANT2G	MANANT03	11	225	47	5.88
SALKAD02	SALKAD_G	330	10.5	75	12	MANANT1G	MANANT03	11	225	47	5.88
BUCHAN_D	BUCHANG1	33	10.5	21.88	10	BRIKAM1G	BRIKAM03	30	225	50	10
BUCHAN_D	BUCHANG2	33	10.5	21.88	10	BALI1_11	BALING05	15	150	80	11.2
BUMBUN03	BUMBUN04	225	161	70	10	BALI1_11	BALING05	15	150	54	11.2
(AMAKW03	KAMAKW D	225	33	40	10	BALING1G	BALIZ 11	6.6	15	3	6
IBEN_03	YIBEN_D	225	33	40	10	BALING2G	BALI2_11	6.6	15	3	6
3IKONG03	BIKONG_D	225	33	40	10	BALING3G	BALI2_11	6.6	15	3	6
KENEMA03	KENEMA_D	225	33	40	10	BALING4G	BALI2_11	6.6	15	3	6
EKEPA03	YEKEPA D	225	33	40	10	KODIAL03	KODIAL05	225	150	75	12
NZEREKO3	NZEREK D	225	33	40	10	SELING1G	SELING05	8.66	150	54	11.2
MANO_03	MANOD	225	33	40	10	SOPAM_1G	SIRAKO05	8.66	150	78	11.2
MONROV03	MONROV09	225	66	70	10	SOTU1_1G	BALING10	2	30	14.5	7.72
BUCHAN03	BUCHAN_D	225	33	40	10	BALI2_11	BALING10	15	30	24	10
	MATOTO07	60	110	25	5.6	BALI1_11	BALING10	15	30	15	7.1

This documen

Noeud 1	Noeud 2	V 1	V 2	SN	Zcc	Noeud 1	Noeud 2	V 1	V 2	SN	Zcc
Nom	Nom	kV	kV	MVA	%pu	Nom	Nom	kV	kV	MVA	%pu
ALI1_11	BALING10	15	30	15	7.1	1130KUMA	1131KUMA	161	34.5	66	11.2
ALI1_11	BALING10	15	30	15	7.1	1150TAFO	1151TAF0	161	34.5	33	11.21
ARSATAC	BALING10	11	30	30	12	1150TAFO	1152TAFO	161	34.5	33	11.21
ARSAL1G	LAFIA_05	5.5	150	5.3	11.2	1170KPON	1171KPON	161	34.5	33	10.9
ARSAL5G	LAFIA_05	5.5	150	7	11.2	1170KPON	1171KPON	161	34.5	33	10.9
ARSAL6G	LAFIA_05	5.5	150	7	11.2	1190KPON	1195KPON	161	11.5	5	9.15
ARSAL7G	LAFIA_05	5.5	150	8	11.2	1200ASAW	1201ASAW	161	34.5	66	11.3
ARSAL8G	LAFIA 05	0.4	150	4.8	11.2	1200ASAW	1202ASAW	161	34.5	66	11.3
IIONO 1G	SEGOU 05	2	150	3.3	10	1230HO	1231HO-1	69	11.5	7	11.8
OUGO 1G	SELING05	2	150	3.3	10	1240KPEV	1241KPEV	69	34.5	13	8.36
ODIAL03	KODIAL05	225	150	75	12	1250KPAN	1251KPAN	69	34.5	20	11.28
EGOU 03	SEGOU 05	225	150	25	12	1300BOGO	1301BOGO	161	34.5	33	10.56
						1300BOGO					
EGOU_03	SEGOU_05	225	150	25	12		1301BOGO	161	34.5	33	10.56
ENIE_1G	KENIE_05	8.66	150	18	11.2	1300BOGO	1301BOGO	161	34.5	33	10.56
ENIE_2G	KENIE_05	8.66	150	18	11.2	1310SOGA	1311SOGA	69	34.5	15	8.21
ENIE_3G	KENIE_05	8.66	150	18	11.2	1360ESSI	1361ESSI	161	34.5	33	10.13
ELOU_1G	KAYES_03	11	225	25	12	1360ESSI	1361ESSI	161	34.5	33	10.13
ELOU_2G	KAYES_03	11	225	25	12	1370MALL	1371MALL	161	34.5	66	11.3
OUTIA1G	KOUTIA03	8.66	225	6	12	1370MALL	1371MALL	161	34.5	66	11.3
OSUMA1G	SEGOU 05	2	150	3.8	10	1390DCEM	1391DCEM	161	34.5	25	8.49
ICABO1G	SIRAKO05	8.66	150	38	11.2	1390DCEM	1391DCEM	161	34.5	33	10.9
LBATR1G	KAYES 03	11	225	75	12	1010AKOS	1017AKOS	161	11.5	13.3	11
APEB10G	CAPEBI08	6.6	90	62.5	10	1320ABOA	1327ABOA	161	34.5	13.3	9.97
		6.6	225	157	10	1090TARK		161	34.5	33	11.22
ENDOU1G	SENDOU03						1092ATAR				
OUNOU08	KOUNOU03	90	225	75	7.49	1320ABOA	ABOA_330	161	330	200	9
AMBAC03	TAMBAC11	225	15	37.5	10	1320ABOA	ABOA_330	161	330	200	9
AGANA03	DAGANA11	225	15	40	10	1501G1	1500BUI	14.4	161	160	13
APEBI08	CAPEB11G	90	15	157	10	1502G2	1500BUI	14.4	161	160	13
OUTIA2G	KOUTIA03	8.66	225	36	12	1503G3	1500BUI	14.4	161	160	13
ELOU_3G	KAYES_03	11	225	25	12	1100PRES	PRES330	161	330	200	9
IKASSO1	SIKASS03	8.66	225	12	12	1100PRES	PRES330	161	330	200	9
010AKOS	1011AKOS	161	14.4	200	13.35	1139K2BS	KSI330	161	330	200	9
010AKOS	1012AKOS	161	14.4	200	13.35	1139K2BS	KSI330	161	330	200	9
010AKOS	1013AKOS	161	14.4	200	13.35	3010LOME	30101LOM	161	330	200	9
010AKOS	1014AKOS	161	14.4	200	13.35	3010LOME	30101LOM	161	330	200	9
											_
010AKOS	1015AKOS	161	14.4	200	13.35	1060WINN	1061BWIN	161	34.5	33	11.2
010AKOS	1016AKOS	161	14.4	200	13.35	1060WINN	1061AWIN	161	34.5	33	11.2
031SMEL	10311VAL	161	13.8	85	12.9	1280TAMA	1281ATAM	161	34.5	66	11.3
031SMEL	10317VAL	161	13.8	18	10.1	1280TAMA	1281BTAM	161	34.5	66	11.3
032SMEL	10312VAL	161	13.8	102	12.9	1380SAWL	1381SAWL	161	34.5	13.3	11.3
032SMEL	10318VAL	161	13.8	18	12.9	1580N_AB	1581N-AB	161	11	53	11.8
033SMEL	10313VAL	161	13.8	102	12.9	1580N_AB	1581N-AB	161	11	53	11.8
034SMEL	10314VAL	161	13.8	102	12.9	1140NKAW	1143NKAW	161	34.5	33	11.22
035SMEL	10315VAL	161	13.8	85	12.9	1110DUNK	1111DUNK	161	34.5	13.3	11.31
036SMEL	10316VAL	161	13.8	85	12.9	15533BSP	15543BLV	161	34.5	145	11.3
190KPON	1191KPON	161	13.8	51	10.6	15533BSP	15553BLV	161	34.5	145	11.3
190KPON	1192KPON	161	13.8	51	10.6	15533BSP	15543BLV	161	34.5	145	11.3
190KPON	1193KPON	161	13.8	51	10.6	1370MALL	1372MALL	161	34.5	66	11.3
190KPON	1194KPON	161	13.8	51	10.6	1370MALL	1372MALL	161	34.5	66	11.3
320ABOA	1321ABOA	161	13.8	155	12.6	1590KIN	1591KIN	161	34.5	13.3	11.31
320ABOA	1322ABOA	161	13.8	155	12.6	1139K2BS	11391K2L	161	34.5	66	11.3
320ABOA	1323ABOA	161	13.8	155	12.6	1139K2BS	11392K2L	161	34.5	66	11.3
320ABOA	1324ABOA	161	13.8	155	12.6	1750BONY	17501BON	161	34.5	13.3	11.31
320ABOA	1325ABOA	161	13.8	155	12.6	1340WA	1341WA	161	34.5	13.3	11.3
413KENY	1412KENY	161	11	53	11.8	1630HAN	1631HAN	161	34.5	13.3	11.3
413KENY	1412KENY	161	11	53	11.8	1620TUMU	1621TUMU	161	34.5	13.3	11.3
600OPB-	1601OPB-	161	13.8	145	11.919	1850ATEB	1852ATEB	161	34.5	13.3	11.31
600OPB-	1602OPB-	161	13.8	145	11.919	1990AYAN	1998AYAN	161	11.5	53	11.8
809ELUB	1800ELUB	225	161	200	9.72	1990AYAN	1995AYAN	161	11.5	53	11.8
											11.31
809ELUB	1800ELUB	225	161	200	9.72	1500BUI	1511BUIL	161	34.5	13.3	
470TT1P	1471TT1P	161	13.8	141	6.9	1278MIM	1279MIM	161	34.5	33	11.2
470TT1P	1472TT1P	161	13.8	141	6.9	1278MIM	1279MIM	161	34.5	33	11.2
309WEXF	13091WEX	161	34.5	33	11.2	1610BUIP	1611BUIP	161	34.5	33	11.22
095NEWT	10951NTA	161	11.5	33	10.6	1610BUIP	1611BUIP	161	34.5	33	11.22
095NEWT	10951NTA	161	11.5	33	10.6	1130KUMA	1133KUM1	161	34.5	66	11.2
480ZEB	1481Z-LV	161	34.5	33	11.3	1130KUMA	1133KUM2	161	34.5	66	11.2
040TEMA	1041T-LV	161	34.5	66	11.39	1130KUMA	1132KUMA	161	34.5	66	11.2
040TEMA	1041T-LV	161	34.5	66	11.39	1700ASOG	1701ASO5	161	13.8	55	11.3
040TEMA	1041T-LV	161	34.5	66	11.39	1700ASOG	1701ASO1	161	13.8	55	11.3
040TEMA	1041T-LV	161	34.5	66	11.39	1700ASOG	1701ASO1	161	13.8	55	11.3
040TEMA	1042T-LV	161	34.5	66	11.3	1700ASOG	1701ASO3	161	13.8	55	11.3
050ACHI	1051ACH	161	34.5	66	11.3	1700ASOG	1701ASO4	161	13.8	55	11.3
050ACHI	1052ACH	161	34.5	66	11.3	1700ASOG	1701ASO6	161	13.8	55	11.3
050ACHI	1053ACH	161	34.5	66	11.3	ABOA_330	ABOA3CC1	330	13.8	175	11
050ACHI	1054ACH	161	34.5	66	11.3	1020VOLT	1029VOLT	161	330	200	9
050ACHI	1055ACH	161	34.5	66	11.3	1020VOLT	1029VOLT	161	330	200	9
080TAKO	1081TAKO	161	34.5	66	11.3	1750BONY	1757G	161	13.8	155	12.6
080TAKO	1082TAKO	161	34.5	66	11.3	1750BONY	1758G	161	13.8	155	12.6
090TARK	1092BTAR	161	34.5	33	11.22	1350YEND	1351YEND	161	34.5	13.3	11.3
100PRES	1102APRE	161	13.2	26.7	7.1	1070C-CO	1071BCCO	161	34.5	66	11.3
130KUMA	1131KUMA	161	34.5	66	11.2	1095NEWT	10951NTA	161	11.5	33	10.6

This docum

Noeud 1	Noeud 2	V 1	V 2	SN	Zcc	Noeud 1	Noeud 2	V1	V 2	SN	Zcc
Nom	Nom	kV	kV	MVA	%pu	Nom	Nom	kV	kV	MVA	%pu
.090TARK	1092BTAR	161	34.5	66	11.3	40UAG133	40UAG115	33	15	15	10
.260TECH	1261TECH	161	34.5	33	11.22	4PTDO132	4PTDOI33	132	33	10	10
.252KPAN	1250KPAN	161	69	90	11.3	4PTDO132	4PTDOI33	132	33	10	10
.470TT1P	1473TT1P	161	13.8	141	6.9	4PTDO132	4PTDOI33	132	33	10	10
L750BONY	1758BON3	161	330	200	9	4KOSSO33	4KOSSO15	33	15	15	10
L750BONY	1758BON3	161	330	200	9	4KOSSO33	4KOSSO15	33	15	15	10
210JUAB	1211JUAB	161	34.5	33	11.2	4BAGR132	4BAGRE 6	132	6.6	10	10
L210JUAB	1211JUAB	161	34.5	33	11.2	4BAGR132	4BAGRE 6	132	6.6	10	10
L021SME2	1022SM2L	161	34.5	145	11.3	4KOMP132	4KOMPI 6	132	6.6	10	10
											_
L021SME2	1022SM2L	161	34.5	145	11.3	4KOMP132	4KOMPI_6	132	6.6	10	10
L180KONO	1181AKON	161	34.5	33	11.22	4BOB1_15	4BOB11_5	15	5.5	2	6
L180KONO	1181BKON	161	34.5	33	11.22	4BOB1_15	4BOB12_5	15	5.5	2	6.5
L210N-OB	1211DNOB	161	34.5	33	11.21	4BOB1 15	4BOB13 5	15	5.5	2	6.5
1210N-OB	1211DNOB	161	34.5	33	11.21	4BOB1 15	4BOB14 5	15	5.5	2	6
1590KIN	1591KIN3	161	330	200	9	4BOB2 15	4BOB21 5	15	5.5	4.75	7
1290BOLG		161	330	200	9			15	5.5	4.75	7.06
	BOLGA330					4BOB2_15	4BOB22_5				
L140NKAW	1143NKAW	161	34.5	33	11.22	4BOB2_33	4BOB23_5	33	5.5	5	6.88
L260TECH	1261TECH	161	34.5	33	11.22	4BOB2_33	4BOB24_5	33	5.5	5	7.87
L309WEXF	13091WEX	161	34.5	33	11.2	4BOB2_33	4BOB25_5	33	5.5	5	6.88
L250KPAN	1251KPAN	69	34.5	20	11.28	4KOSSO33	4KOS1_11	33	11	5	7.15
2010ABOB	2011ABOB	225	90	70	10.15	4KOSSO33	4KOS2 11	33	11	8	9.89
2010ABOB	2011ABOB	225	90	70	10.245	4KOSSO33	4KOS2_11 4KOS3 11	33	11	8	9.89
2010ABOB	2011ABOB	225	90	70	10.245	4KOSSO33	4KOS4_11	33	11	10	8.58
2010ABOB	2011ABOB	225	90	70	10.245	4KOSSO33	4KOS5_11	33	11	10	8.58
2172AYAM	2170AYAM	5.5	90	15	11.5	4KOSSO33	4KOS6_11	33	11	23	10.68
2181AYAM	2180AYAM	5.5	90	19	9.7	40UAG215	40UA21_5	15	5.5	6.6	8
2060FERK	2061FERK	225	90	65	10.17	40UAG215	40UA22 5	15	5.5	6.6	8
2100MAN-	2101MAN-	225	90	70			40UA23 5	15			8
					10.16	40UAG215			5.5	6.6	_
2070SOUB	2071SUBR	225	90	70	10.13	40UAG215	40UA24_5	15	5.5	10.65	8
2090BUYO	2091BUYO	225	90	70	10.1	40UAG215	40UA25_5	15	5.5	10.65	8
2093BUYO	2090BUYO	10.5	225	61	10.96	40UAG115	40UA11_6	15	6.3	4	7.43
2094BUYO	2090BUYO	10.5	225	61	10.95	40UAG115	40UA12 6	15	6.3	4	7.43
2040KOSS	2041KOSS	225	90	65	10.25	40UAG115	40UA13 6	15	5.5	5	7.92
2043KOSS	2040KOSS	17	225	72	13.3	1040TEMA	1040TGEN	161	11	75	10
											_
2042KOSS	2040KOSS	17	225	72	13.3	12951BOL	1290BOLG	225	161	200	11.3
2044KOSS	2041KOSS	17	90	72	14.05	20NTAG82	2021VRID	15	90	151	11
2030TAAB	2031TAAB	225	90	70	10.3	20NTAG83	2021VRID	15	90	151	11
2030TAAB	2031TAAB	225	90	70	10.3	2371BUND	2370BUND	225	90	50	10.22
2032TAAB	2030TAAB	13.8	225	82.5	12.47	3NEWIPP	3LOME161	11	161	32	10.5
2033TAAB	2030TAAB	13.8	225	82.5	12.53	KOMSILG5	4ZAGTO33	11	33	22.5	10.68
2034TAAB	2030TAAB	13.8	225	82.5	12.53	2NEWCC-1	2209RIVI	15.75	225	190	12.5
											_
2209RIVI	2210RIVI	225	90	70	10.4	2NEWCC-2	2209RIVI	15.75	225	190	12.5
2020VRID	2021VRID	225	90	70	10.3	2209RIVI	2210RIVI	225	90	70	10.4
2020VRID	2021VRID	225	90	70	10.3	KOMSILG6	4ZAGTO33	11	33	22.5	10.68
2020VRID	2021VRID	225	90	70	10.3	KOMSILG4	4ZAGTO33	11	33	15.62	10.68
2024VRID	2021VRID	11	90	51	11	2050BOUA	2340BOUA	225	90	70	10.18
2025VRID	2021VRID	11	90	51	11	2050BOUA	2340BOUA	225	90	70	10.18
					11						_
2026VRID	2021VRID	11	90	51		2040KOSS	2041KOSS	225	90	65	10.25
2023VGT-	2020VRID	11	225	61	11.53	3010LOME	CONTOU1G	161	15	63	11.6
2022VGT-	2020VRID	11	225	61	11.53	3010LOME	CONTOU1G	161	15	63	11.6
2501AZI	2500AZIT	15.75	225	190	12.5	3010LOME	CONTOU1G	161	15	20	8
2502AZI	2500AZIT	15.75	225	190	12.5	3030COTO	AKPAKP1G	161	15	37.5	8
2110LABO	2111LABO	225	90	50	10.22	NATITI04	NATITI1G	161	15	15	8
											_
2080S-PE	2081PEDR	225	90	65	10.16	3030COTO	PORTON1G	161	15	15	10
2080S-PE	2081PEDR	225	90	70	10.16	PARAKO04	PARAKO1G	161	15	32	10
2092BUYO	2091BUYO	10.5	90	82.5	11.53	3010LOME	LOME1G	161	15	20	10
2171AYAM	2170AYAM	5.5	90	15	11.5	3KARA161	KARA1G	161	15	25	10
182AYAM	2180AYAM	5.5	90	19	9.7	MA_GLE04	CAI1G	161	15	12.5	10
20NGTAG8	2021VRID	15	90	151	11	MA GLE04	CAI 2G	161	15	12.5	10
2027VRID	2020VRID	15	225	151	12	MA GLE04	CAI3G	161	15	12.5	10
2229YOPO	2231YOPO	225	90	100	10.15	MA_GLE04	CAI4G	161	15	12.5	10
2229YOPO	2231YOPO	225	90	100	10.15	MA_GLE04	CAI5G	161	15	12.5	10
3061NANG	3060NANG	10.3	161	35.5	13	MA_GLE04	CAI6G	161	15	12.5	10
062NANG	3060NANG	10.3	161	35.5	13	MA_GLE04	CAI7G	161	15	12.5	10
NGLOG12	3LOME161	11	161	32	10.5	MA GLE04	CAI 8G	161	15	12.5	10
KODE225	4KODEN33	225	33	40	17.5	3030COTO	IPPSOL1G	161	15	25	10
IKODE225	4KODEN33	225	33	40	17.5	3030COTO	IPPTHE1G	161	15	125	10
ZAGT225	4ZAGTO90	225	90	70	16.5	KANDI_04	SOLBEN1G	161	15	6.25	10
ZAGT225	4ZAGTO90	225	90	70	16.5	MANGO_04	SOLTOG1G	161	15	6.25	10
KOSSO90	4KOSSO33	90	33	40	11.2	KANDI_04	ADFSOL1G	161	15	6.25	10
KOSSO90	4KOSSO15	90	15	40	11.4	MA GLE04	MA GLE1G	161	15	190	10
OUAG190	40UAG115	90	15	40	11.4	MA GLE04	MA GLE2G	161	15	190	10
							_				_
IOUAG290	40UAG215	90	15	40	11.4	MA_GLE04	MA_GLE3G	161	15	190	10
IBOB2_33	4BOB2_15	33	15	10	7	3040SAKA	SAKETE02	161	330	200	12
IBOB2_33	4BOB2_15	33	15	10	7	3040SAKA	SAKETE02	161	330	200	12
BOB1 33	4BOB1 15	33	15	10	6.68	2209RIVI	RIVIER02	225	330	200	9
4BOB1_33	4BOB1_15	33	15	10	6.68	2209RIVI	RIVIER02	225	330	200	9
											_
40UAG233	40UAG215	33	15	15	10	2209RIVI	2210RIVI	225	90	70	10.4
IOUAG233	40UAG215	33	15	15	10	2020VRID	2021VRID	225	90	70	10.3
	40UAG115	33	15	15	10	BISSAU03	BISSAU1G	225	30	20	8
IOUAG133	400AG113	- 55								20	

This docum

Noeud 1	Noeud 2	V 1	V 2	SN	Zcc	Noeud 1	Noeud 2	V 1	V 2	SN	Zcc
Nom	Nom	kV	kV	MVA	%pu	Nom	Nom	kV	kV	MVA	%pu
DUAGAE02	OUAGAE03	330	225	150	8	1200ASAW	1202ASAW	161	34.5	66	11.3
DUAGAE02	OUAGAE03	330	225	150	8	1230HO	1231HO-1	69	11.5	7	11.8
DUAGAE03	OUAGAE08	225	90	100	8	1310SOGA	1311SOGA	69	34.5	20	8.21
DUAGAE03	OUAGAE08	225	90	100	8	1380SAWL	1381SAWL	161	34.5	13.3	11.3
1PTDO132	PATDOI08	132	90	75	10	1139K2BS	11392K2L	161	34.5	66	11.3
SAMBAG03	SAMBANG1	225	13.2	40	10	1309WEXF	13091WEX	161	34.5	33	11.2
SAMBAG03	SAMBANG2	225	13.2	37.5	10	1870CAPE	1871CAPL	161	34.5	66	11.3
SAMBAG03	SAMBANG3	225	13.2	37.5	10	1870CAPE	1871CAPL	161	34.5	66	11.3
						1870CAPE					
SAMBAG03	SAMBANG4	225	13.2	37.5	10		CAPE330	161	330	200	9
KALETA03	KALETAG1	225	10.3	90	10	1850BERE	1851BERL	161	34.5	33	11.22
KALETA03	KALETAG2	225	10.3	90	10	1850BERE	1851BERL	161	34.5	33	11.22
KALETA03	KALETAG3	225	10.3	90	10	1480ZEB	1481Z-LV	161	34.5	33	11.3
SELING03	SELING05	225	150	150	10	1350YEND	1351YEND	161	34.5	13.3	11.3
FOMI03	FOMIG1	225	10.3	37.5	10	1340WA	1341WA	161	34.5	13.3	11.3
FOMI03	FOMIG2	225	10.3	37.5	10	1590KIN	1591KIN	161	34.5	13.3	11.31
FOMI03	FOMI_G3	225	10.3	37.5	10	1620TUMU	1621TUMU	161	34.5	13.3	11.3
BRIKAM1G	BRIKAM03	30	225	50	10	1630HAN	1631HAN	161	34.5	13.3	11.3
ГАМВАС03	TAMBAC12	225	15	10	10	1500BUI	1511BUIL	161	34.5	13.3	11.31
L320ABOA	1326ABOA	161	13.8	155	12.6	1750BONY	17501BON	161	34.5	13.3	11.31
L700ASOG	SASO2CC1	161	13.8	225	11.3	1850ATEB	1852ATEB	161	34.5	13.3	11.31
L700ASOG	SASO2CC2	161	13.8	225	11.3	1010AKOS	1017AKOS	161	11.5	13.3	11
KOMSILG1	4ZAGTO33	11	33	22.5	10.68	1240KPEV	1241KPEV	69	34.5	13	8.36
KOMSILG2	4ZAGTO33	11	33	23	10.68	1110DUNK	1111DUNK	161	34.5	13.3	11.31
KOMSILG3	4ZAGTO33	11	33	15.62	10.68	1561A4BS	1560A4BS	161	330	500	9
BOB2 2G1	4BOB2 33	11	33	13	6.88	1561A4BS	1560A4BS	161	330	500	9
BOB2_2G1 BOB2_2G2	4BOB2_33	11	33	13	6.88	1561A4BS	1562A4BS	161	34.5	145	11.3
MALLHYD	4BOB2_33	0.4	33	4	6.88	1561A4BS	1562A4BS	161	34.5	145	11.3
NIAM2_06	GOUDELG1	132	20	7.5	9.8533	1110DUNK	1115DUNK	161	330	200	9
NIAM2_06	GOUDELG2	132	20	7.5	9.8533	NIAM2_06	DYODYONG	132	20	33	9.8533
NIAM2_06	GOUDELG3	132	20	7.5	9.8533	30500NIG	KETOU_G	161	10.3	200	13
NIAM2_06	GOUDELG4	132	20	7.5	9.8533	SOUBREG1	2070SOUB	10.5	225	120	11.53
ALAOJI02	ICSPOWG1	330	15	125	10	SOUBREG2	2070SOUB	10.5	225	120	11.53
ALAOJI02	ICSPOWG2	330	15	125	10	SOUBREG3	2070SOUB	10.5	225	120	11.53
ALAOJI02	ICSPOWG3	330	15	125	10	BOUTOUBG	2070SOUB	10.5	225	190	11.53
ALAOJI02	ICSPOWG4	330	15	125	10	GOUINA1G	KAYES_03	11	225	59	12
ALAOJI02	ICSPOWG5	330	15	125	10	GOUINA2G	KAYES_03	11	225	59	12
ALAOJI02	ICSPOWG6	330	15	125	10	GOUINA3G	KAYES_03	11	225	59	12
IKOTAB02	BONMOBG1	330	15	162.5	13	ADJARAG1	ADJARA04	10.3	161	54	13
KOTAB02	BONMOBG2	330	15	162.5	13	ADJARAG2	ADJARA04	10.3	161	54	13
KOTAB02	BONMOBG3	330	15	162.5	13	ADJARAG3	ADJARA04	10.3	161	54	13
EGBIN 02	CHEVROG1	330	16	312.5	10.22	KANDAD06	KANDADG1	132	20	40	9.8533
EGBIN 02	CHEVROG2	330	16	312.5	10.22	KANDAD06	KANDADG2	132	20	40	9.8533
EGBIN_02	CHEVROG3	330	16	312.5	10.22	KANDAD06	KANDADG3	132	20	40	9.8533
ALAOJI02	TOTALFG4	330	15	156.25	10	KANDAD06	KANDADG4	132	20	40	9.8533
ALAOJI02	TOTALFG3	330	15	156.25	10	CAPE330	HEMANGG	330	13.8	115	11
ALAOJI02	TOTALFG2	330	15	156.25	10	12951BOL	PWALUGUG	225	13.8	60	11
ALAOJI02	TOTALFG1	330	15	156.25	10	1350YEND	JUALE G	161	13.8	110	11
ERUNKA02	WESTCOG1	330	15	156.25	10	LABE 03	DIGAN G	225	10.3	117	10
ERUNKA02	WESTCOG2	330	15	156.25	10	AMARYA03	AMARYAG1	225	10.3	90	10
ERUNKA02		330	15	156.25	10			225	10.3	90	10
	WESTCOG3					AMARYA03	AMARYAG2				
ERUNKA02	WESTCOG4	330	15	156.25	10	AMARYA03	AMARYAG3	225	10.3	90	10
KOTAB02	IBOMP2G1	330	15	156.25	10	AMARYA03	AMARYAG4	225	10.3	90	10
KOTAB02	IBOMP2G2	330	15	156.25	10	LINSAN03	KASSAB_G	225	10.3	169	10
KOTAB02	IBOMP2G3	330	15	156.25	10	BIKONG03	BENKONGG	225	10.3	107	10
KOTAB02	IBOMP2G4	330	15	156.25	10	YIBEN 03	BUMBUN3G	225	10.3	115	10
KEJAW02	FARMELEG	330	15	187.5	10	BUMBUN03	BUMBU45G	225	10.3	120	10
2028VRID	2020VRID	15	225	151	12	MANO 03	MANORIG1	225	10.3	115	10
2028VRID 2029VRID											10
	2020VRID	15	225	151	12	MANO_03	MANORIG2	225	10.3	115	
BALI1_11	BALING10	15	30	15	7.1	STPAUL03	SPAULG11	225	10.3	50	10
MATOTO_D	MATOTO07	60	110	25	5.6	STPAUL03	SPAULG21	225	10.3	75	10
BISSAU03	BISSAU1G	225	30	20	8	STPAUL03	SPAULG12	225	10.3	50	10
GBARAN02	GBARANT2	330	1	150	12	STPAUL03	SPAULG22	225	10.3	75	10
GBARAN06	GBARANT2	132	1	150	-1.99745	MARKALAG	SEGOU_05	2	150	13	10
MAMBIL02	MAMBIG01	330	15	550	13	BADOUMG1	BADOUM03	11	225	47	5.88
MAMBIL01			330		10	BADOUMG2		11	225		5.88
	MAMBIL02	760		1000			BADOUM03			47	
MAMBIL01	MAMBIL02	760	330	1000	10	GRIBOPOG	2070SOUB	10.5	225	140	11.53
MAMBIL01	MAMBIL02	760	330	1000	10	ABOCOMG1	2140BONG	5.5	90	38	9.7
MAMBIL02	MAMBIG02	330	15	550	13	ABOCOMG2	2140BONG	5.5	90	38	9.7
MAMBIL02	MAMBIG03	330	15	550	13	ABOCOMG3	2140BONG	5.5	90	38	9.7
MAMBIL02	MAMBIG04	330	15	550	13	TIBOTOG1	TIBOTO03	10.5	225	94	11.53
MAMBIL02	MAMBIG05	330	15	550	13	TIBOTOG2	TIBOTO03	10.5	225	94	11.53
	MAMBIG06	330	15	550	13	TIBOTOG2	TIBOTO03	10.5	225	94	11.53
MAMBIL02											
MAMBIL02	MAMBIG07	330	15	550	13	SENDOU2G	SENDOU03	6.6	225	157	10
MAMBIL02	MAMBIG08	330	15	550	13	SENDOU3G	SENDOU03	6.6	225	157	10
UNGER02	ZUNGERG1	330	15.65	220	12.85	KODIAL03	KODIAL05	225	150	75	12
UNGER02	ZUNGERG2	330	15.65	220	12.85	KOUNOU08	KOUNOU03	90	225	75	7.49
ZUNGER02	ZUNGERG3	330	15.65	220	12.85	KOUNOU08	KOUNOU03	90	225	75	7.49
UNGER02	ZUNGERG4	330	15.65	220	12.85	KOUNOU08	KOUNOU03	90	225	75	7.49
SALKAD02	SALKADG2	330	10.5	85	12	LINSAN03	LAFOU_G	225	10.3	117	10
	SALKADG3	330	10.5	85	12	MATOTO03	MATOTO07	225	110	75	10
SALKAD02	SALKADGS	550									

This document

ō
~
Ĕ
р
Ф
e
ite
₹
>
.₫
Ъ
Ħ
ಕ
£
Μİ
_
dder
ĕ
ā
.5
S
ties
ar
Ф
Ð
ŧ
2
issio
SS
Ξ
12
ā
₽
5
ĕ
.₫
g
<u>.0</u>
<u>d</u>
ಕ
>
₽
- 3
۷.
S
g
-≡
8
.⊑
g
ш
ractebel
e
Ŭ
=
o
>
Ħ
ğ
2
d
æ
ŧ
.2
Ħ
Ē
Ξ
Ē
용
2
Ŧ

Noeud 1	Noeud 2	V 1	V 2	SN	Zcc	Noe	ud 1 Noeud 2	V 1	V 2	SN	Zcc
Nom	Nom	kV	kV	MVA	%pu	No	m Nom	kV	kV	MVA	%pu
NZEREK03	GOZOGUEG	225	10.3	60	10	BEYLA_(03 NZEBELAG	225	10.3	60	10
LABE03	BONKONDG	225	10.3	190	10	MALI_	03 KOURAVEG	225	10.3	169	10
NZEREK03	FRANKO_G	225	10.3	45	10	MALI_	03 KOUYA_G	225	10.3	107	10
BOKE_03	POUDADLG	225	10.3	113	10	LABE	O3 FETORE_G	225	10.3	155	10
BISSAU03	BISSAU1G	225	30	20	8	LABE	O3 GRKINKOG	225	10.3	365	10
1040TEMA	1041T-LV	161	34.5	66	11.39	3010LO	ME CCTOGOG1	161	15	190	10
1050ACHI	1051ACH	161	34.5	66	11.3	3010LO	ME CCTOGOG2	161	15	190	10
IKOTABT3	IKOTAB06	1	132	150	-1.99745	3010LO	ME CCTOGOG3	161	15	190	10
IKOTAB02	IKOTABT3	330	1	150	12	1040TE	ИА 1041T-LV	161	34.5	66	11.39
MONROV09	MONROV_D	66	33	20	10	1700AS	OG SASOCC3	161	13.8	225	11.3
MATOTO_D	MATOTO07	60	110	25	5.6	1021SM	E2 BTPP_G1	161	13.8	320	11.3
TOMBO_D	MATOTO_D	20	60	50	11.9	1021SM	E2 CEMPOWEG	161	13.8	320	11.3
KOUNOU08	KOUNOU03	90	225	75	7.49	BENINN	02 ETHIOPG3	330	17	356	13
LINSAN03	BALASSAG	225	10.3	225	10	BENINN	02 ETHIOPG4	330	17	356	13
KOUKOU03	KOUKOUTG	225	10.3	351	10	BENINN	02 ETHIOPG2	330	17	356	13
BOUREY03	BOUREYAG	225	10.3	225	10	BENINN	02 ETHIOPG1	330	17	356	13

9. ANNEXE: ETUDE DE STABILITE: MODELE DYNAMIQUE PSA POUR L'ANNEE 2015 : DONNEES GENERATION

9.1. Generateurs

Machine	Noeud	Pays	SN	VN	PN turb	PN alt	Rs	Xs	Xd	X'd	X"d	Xq	X'q	X''q	T'do	T"do	T'qo	T"qo	Н	AVR	DATA	GOVERNOR	DATA
Nom	Nom	Nom	MVA	kV	MW	MW	pu	S	S	S	S	MW.s/MVA		SET		SET							
KAHONG71	KAHONE2G	SE	17.0	15.0	15.0	15.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
KAHONG72	KAHONE2G	SE	17.0	15.0	15.0	15.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
KAHONG73	KAHONE1G	SE	17.0	15.0	15.0	15.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
KAHONG74	KAHONE1G	SE	17.0	15.0	15.0	15.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
B_AIRG61	BELAIR11	SE	18.0	15.0	16.0	16.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
B_AIRG62	BELAIR11	SE	18.0	15.0	16.0	16.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
B_AIRG63	BELAIR11	SE	18.0	15.0	16.0	16.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
B_AIRG64	BELAIR11	SE	18.0	15.0	16.0	16.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
B_AIRT4A	BELAIR1G	SE	33.0	11.0	32.0	32.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	TURGAZ+	3
CAPDB11A	CAPEBI4G	SE	26.0	6.6	21.0	21.0	0.005	0.140	1.710	0.314	0.238	0.005	1.100		4.11	0.09		0.15	1.50	AC1IEEE+	1	DIESEL	2
CAPDB13A	CAPEBI5G	SE	24.0	6.6	19.0	19.0	0.005	0.140	1.480	0.380	0.280	0.005	0.960		5.30	0.03		0.04	2.00	AC1IEEE+	1	DIESEL	2
CAPDB14A	CAPEBI6G	SE	24.0	6.6	19.0	19.0	0.005	0.140	1.480	0.380	0.280	0.005	0.960		5.30	0.03		0.04	2.00	AC1IEEE+	1	DIESEL	2
CAPDB144	CAPEBI1G	SE	19.0	11.0	15.0	15.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
CAPDB145	CAPEBI1G	SE	19.0	11.0	15.0	15.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
CAPDB19A	CAPEBI3G	SE	25.0	6.6	20.0	20.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	TURGAZ+	3
CAPDB1G3	CAPEBI2G	SE	30.0	6.6	24.0	24.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	TURGAZ+	3
CAPDB17A	CAPEBI9G	SE	34.0	6.6	28.0	28.0	0.004	0.110	2.050	0.180	0.120	0.004	2.050		4.00	0.05		0.05	4.70	AC1IEEE+	1	GOVCLAS	1
CAPDB15A	CAPEBI8G	SE	38.0	6.6	30.0	30.0	0.004	0.110	1.800	0.180	0.120	0.004	1.800		4.30	0.05		0.05	4.30	AC1IEEE+	1	GOVCLAS	1
CAPDB18A	CAPEBI7G	SE	38.0	6.6	30.0	30.0	0.004	0.110	1.800	0.180	0.120	0.004	1.800		4.30	0.05		0.05	4.30	AC1IEEE+	1	GOVCLAS	1
KOUN_1G1	KOUNOU11	SE	9.0	15.0	8.0	8.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
KOUN_1G2	KOUNOU11	SE	9.0	15.0	8.0	8.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
KOUN_1G3	KOUNOU11	SE	9.0	15.0	8.0	8.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
KOUN_1G4	KOUNOU11	SE	9.0	15.0	8.0	8.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
KOUN_1G5	KOUNOU11	SE	9.0	15.0	8.0	8.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
KOUN_1G6	KOUNOU11	SE	9.0	15.0	8.0	8.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
KOUN_1G7	KOUNOU11	SE	9.0	15.0	8.0	8.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
KOUN_1G8	KOUNOU11	SE	9.0	15.0	8.0	8.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
KOUN_1G9	KOUNOU11	SE	9.0	15.0	8.0	8.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
GTI_111A	GTI1G	SE	44.0	11.0	35.0	35.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	GAST	2
GTI_113A	GTI1G	SE	21.0	11.0	17.0	17.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	PMCONST	1
TOBIN_1G	CAPEB10G	SE	50.0	6.6	40.0	40.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
BELAIR1G	BELAIR11	SE	19.0	15.0	15.0	15.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
BELAIR2G	BELAIR11	SE	19.0	15.0	15.0	15.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
BELAIR3G	BELAIR11	SE	88.0	15.0	70.0	70.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
SENDOU1G	SENDOU1G	SE	156.0	6.7	125.0	125.0	0.000	0.221	1.905	0.319	0.276	0.000	1.715	0.319	5.00	0.05	1.00	0.05	6.00	AC1IEEE+	1	GOVCLAS	1
KOUDI_1G	TAMBAC11	SE	19.0	15.0	15.0	15.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
KOUDI_2G	TAMBAC11	SE	19.0	15.0	15.0	15.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2

Machine	Noeud	Pays	SN	VN	PN turb	PN alt	Rs	Xs	Xd	X'd	X''d	Χq	X'q	X"q	T'do	T''do	T'qo	T''qo	Н	AVR	DATA	GOVERNOR	DATA
Nom	Nom	Nom	MVA	kV	MW	MW	pu	S	S	S	S	MW.s/MVA		SET		SET							
ZIGUINCG	ZIGUIN03	SE	13.0	225.0	10.0	10.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
TAMBDIG1	TAMBAC12	SE	10.0	15.0	8.0	8.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
ROSSBE1G	DAGANA11	SE	19.0	15.0	15.0	15.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	GOVCLAS	1
ROSSBE2G	DAGANA11	SE	19.0	15.0	15.0	15.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	GOVCLAS	1
GAMB_EQG	BRIKAM1G	GA	130.0	30.0	104.0	104.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	2
GBISSEQG	BISSAU1G	GB	36.0	30.0	29.0	29.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
TOMBO3G1	TB3G1	GU	14.0	6.3	12.0	12.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
TOMBO3G2	TB3G2	GU	14.0	6.3	12.0	12.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
TOMBO3G3	TB3G3	GU	14.0	6.3	12.0	12.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
TOMBO3G4	TB3G4	GU	14.0	6.3	12.0	12.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
TOMBO5G1	TB5G1	GU	14.0	11.0	11.0	11.0	0.005	0.140	2.130	0.380	0.249	0.005	1.110		6.10	0.03		0.11	2.00	AC1IEEE+	1	DIESEL	3
TOMBO5G2	TB5G2	GU	14.0	11.0	11.0	11.0	0.005	0.140	2.130	0.380	0.249	0.005	1.110		6.10	0.03		0.11	2.00	AC1IEEE+	1	DIESEL	3
TOMBO5G3	TB5G3	GU	14.0	11.0	11.0	11.0	0.005	0.140	2.130	0.380	0.249	0.005	1.110		6.10	0.03		0.11	2.00	AC1IEEE+	1	DIESEL	3
MANEAHG1	MANEAHG1	GU	52.0	11.0	42.0	42.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
MANEAHG2	MANEAHG2	GU	52.0	11.0	42.0	42.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
MANEAHG3	MANEAHG3	GU	52.0	11.0	42.0	42.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
GARAFIG1	GARAFIG1	GU	32.0	5.7	25.0	25.0	0.011	0.167	0.994	0.268	0.185	0.011	0.767		8.00	0.04		0.04	2.80	EXST1	2	HYGOV	4
GARAFIG2	GARAFIG2	GU	32.0	5.7	25.0	25.0	0.011	0.167	0.994	0.268	0.185	0.011	0.767		8.00	0.04		0.04	2.80	EXST1	2	HYGOV	4
GARAFIG3	GARAFIG3	GU	32.0	5.7	25.0	25.0	0.011	0.167	0.994	0.268	0.185	0.011	0.767		8.00	0.04		0.04	2.80	EXST1	2	HYGOV	4
GRCHUTG1	GRCHUTG1	GU	6.0	3.3	5.0	5.0	0.011	0.167	0.994	0.268	0.185	0.011	0.767		8.00	0.04		0.04	2.80	EXST1	2	HYGOV	5
GRCHUTG2	GRCHUTG2	GU	6.0	3.3	5.0	5.0	0.011	0.167	0.994	0.268	0.185	0.011	0.767		8.00	0.04		0.04	2.80	EXST1	2	HYGOV	5
GRCHUTG3	GRCHUTG3	GU	11.0	5.5	9.0	9.0	0.011	0.167	0.994	0.268	0.185	0.011	0.767		8.00	0.04		0.04	2.80	EXST1	2	HYGOV	5
GRCHUTG4	GRCHUTG4	GU	11.0	5.5	9.0	9.0	0.011	0.167	0.994	0.268	0.185	0.011	0.767		8.00	0.04		0.04	2.80	EXST1	2	HYGOV	5
SAMBANG1	SAMBANG1	GU	40.0	13.2	32.0	32.0	0.011	0.167	0.994	0.268	0.185	0.011	0.767		8.00	0.04		0.04	2.80	EXST1	2	HYGOV	5
SAMBANG2	SAMBANG2	GU	40.0	13.2	32.0	32.0	0.011	0.167	0.994	0.268	0.185	0.011	0.767		8.00	0.04		0.04	2.80	EXST1	2	HYGOV	5
SAMBANG3	SAMBANG3	GU	40.0	13.2	32.0	32.0	0.011	0.167	0.994	0.268	0.185	0.011	0.767		8.00	0.04		0.04	2.80	EXST1	2	HYGOV	5
SAMBANG4	SAMBANG4	GU	40.0	13.2	32.0	32.0	0.011	0.167	0.994	0.268	0.185	0.011	0.767		8.00	0.04		0.04	2.80	EXST1	2	HYGOV	5
FOMI G1	FOMI G1	GU	38.0	10.3	30.0	30.0	0.011	0.167	0.994	0.268	0.185	0.011	0.767		8.00	0.04		0.04	2.80	EXST1	2	HYGOV	5
FOMI G2	FOMI G2	GU	38.0	10.3	30.0	30.0				0.268					8.00	0.04		0.04	2.80	EXST1	2	HYGOV	5
FOMI G3	FOMI G3	GU	38.0	10.3	30.0	30.0	0.011	0.167	0.994	0.268	0.185	0.011	0.767		8.00	0.04		0.04	2.80	EXST1	2	HYGOV	5
DONKEAG1	DONKEAG1	GU	8.0	6.3	8.0	8.0	0.048	0.180	0.882	0.320	0.270	0.048	0.600		4.50	0.05		0.05	2.80	EXST1	1	PIDGOV	5
DONKEAG2	DONKEAG2	GU	8.0	6.3	8.0	8.0	0.048	0.180	0.882	0.320	0.270	0.048	0.600		4.50	0.05		0.05	2.80	EXST1	1	PIDGOV	5
KALETAG1	KALETAG1	GU	94.0	10.3	80.0	80.0	0.048	0.180	0.882	0.320	0.270	0.048	0.600		4.50	0.05		0.05	2.80	EXST1	1	PIDGOV	5
KALETAG2	KALETAG2	GU	94.0	10.3	80.0	80.0	0.048	0.180	0.882	0.320	0.270	0.048	0.600		4.50	0.05		0.05	2.80	EXST1	1	PIDGOV	5
KALETAG3	KALETAG3	GU	94.0	10.3	80.0	80.0				0.320					4.50	0.05		0.05	2.80	EXST1	1	PIDGOV	5
MANAN11A	MANANT5G	MA	47.0	11.0	40.0	40.0	0.011	0.167	1.000	0.300	0.250	0.011	0.650		6.70	0.05		0.05	2.80	AC1IEEE+	1	HYGOV	5
MANAN12A	MANANT4G	MA	47.0	11.0	40.0	40.0	0.011	0.167	1.000	0.300	0.250	0.011	0.650		6.70	0.05		0.05	2.80	AC1IEEE+	1	HYGOV	5
	MANANT3G	MA	47.0	11.0	40.0	40.0				0.300						0.05		0.05	2.80	AC1IEEE+	1	HYGOV	5
	MANANT2G	MA	47.0	11.0	40.0	40.0				0.300						0.05		0.05	2.80	AC1IEEE+	1	HYGOV	5
	MANANT1G	MA	47.0	11.0	40.0	40.0				0.300						0.05		0.05	2.80	AC1IEEE+	1	HYGOV	5
SELING1	SELING1G	MA	14.0	8.7	12.0	12.0				0.268						0.04		0.04	2.80	AC1IEEE+	1	HYGOV	5
SELING2	SELING1G	MA	14.0	8.7	12.0	12.0				0.268						0.04		0.04	2.80	AC1IEEE+	1	HYGOV	5
SELING3	SELING1G	MA	14.0	8.7	12.0	12.0				0.268						0.04		0.04	2.80	AC1IEEE+	1	HYGOV	5

156/167

MP-WAPP/4NT/221290/001/00 • Octobre 2011

Machine	Noeud	Pays	SN	VN	PN turb	PN alt	Rs	Xs	Xd	X'd	X"d	Xq	X'q	X"q	T'do	T''do	T'qo	T"qo	Н	AVR	DATA	GOVERNOR	DATA
Nom	Nom	Nom	MVA	kV	MW	MW	pu	S	S	S	S	MW.s/MVA		SET		SET							
SELING4	SELING1G	MA	14.0	8.7	12.0	12.0	0.011	0.167	0.994	0.268	0.185	0.011	0.767		8.00	0.04		0.04	2.80	AC1IEEE+	1	HYGOV	5
FELOU_1G	FELOU_1G	MA	25.0	11.0	20.0	20.0	0.048	0.180	0.882	0.320	0.270	0.048	0.600		4.50	0.05		0.05	2.80	AC1IEEE+	1	PIDGOV	6
FELOU_2G	FELOU_2G	MA	25.0	11.0	20.0	20.0	0.048	0.180	0.882	0.320	0.270	0.048	0.600		4.50	0.05		0.05	2.80	AC1IEEE+	1	PIDGOV	6
FELOU_3G	FELOU_3G	MA	25.0	11.0	20.0	20.0	0.048	0.180	0.882	0.320	0.270	0.048	0.600		4.50	0.05		0.05	2.80	AC1IEEE+	1	PIDGOV	6
KENIE_1G	KENIE_1G	MA	18.0	8.7	14.0	14.0	0.048	0.180	0.882	0.320	0.270	0.048	0.600		4.50	0.05		0.05	2.80	AC1IEEE+	1	PIDGOV	7
KENIE_2G	KENIE_2G	MA	18.0	8.7	14.0	14.0	0.048	0.180	0.882	0.320	0.270	0.048	0.600		4.50	0.05		0.05	2.80	AC1IEEE+	1	PIDGOV	7
KENIE_3G	KENIE_3G	MA	18.0	8.7	14.0	14.0	0.048	0.180	0.882	0.320	0.270	0.048	0.600		4.50	0.05		0.05	2.80	AC1IEEE+	1	PIDGOV	7
BALIN_G1	BALI1_11	MA	8.0	15.0	6.0	6.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
BALIN_G2	BALI1_11	MA	8.0	15.0	6.0	6.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
BALIN_G3	BALI1_11	MA	8.0	15.0	6.0	6.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
BALIN_G4	BALI1_11	MA	6.0	15.0	5.0	5.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
DARSAL1G	DARSAL1G	MA	5.0	5.5	4.0	4.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
DARASLA5	DARSAL5G	MA	7.0	5.5	5.0	5.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
DARASLA6	DARSAL6G	MA	7.0	5.5	6.0	6.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
DARASLA7	DARSAL7G	MA	8.0	5.5	6.0	6.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
DARSAL8G	DARSAL8G	MA	5.0	0.4	4.0	4.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
SOPAM_01	SOPAM_1G	MA	14.0	8.7	12.0	12.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
SOPAM_02	SOPAM_1G	MA	14.0	8.7	12.0	12.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
SOPAM_03	SOPAM_1G	MA	14.0	8.7	12.0	12.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
SOPAM_04	SOPAM_1G	MA	14.0	8.7	12.0	12.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
SOPAM_05	SOPAM_1G	MA	14.0	8.7	12.0	12.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
BALBIDG1	BALI1_11	MA	12.0	15.0	10.0	10.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
BALBIDG2	BALI1_11	MA	12.0	15.0	10.0	10.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
BALBIDG3	BALI1_11	MA	12.0	15.0	10.0	10.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
BALBIDG4	BALI1_11	MA	12.0	15.0	10.0	10.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
BALBIDG5	BALI1_11	MA	12.0	15.0	10.0	10.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
BALBIDG6	BALI1_11	MA	12.0	15.0	10.0	10.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
ALBATR1G	ALBATR1G	MA	75.0	11.0	66.0	66.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
DARSATAC	DARSATAC	MA	27.0	11.0	25.0	25.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	TURGAZ+	3
VICABO1G	VICABO1G	MA	38.0	8.7	30.0	30.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	TURGAZ+	3
	BUMBU1G1	SL	32.0	13.8	25.0	25.0	0.006	0.145	1.260	0.310	0.210	0.006	0.760		6.64	0.05		0.10	2.97	EXPIC1	1	PIDGOV	4
		SL	32.0	13.8	25.0	25.0			1.260							0.05		0.10	2.97	EXPIC1	1	PIDGOV	4
BUMBUN2G	BUMBUN2G	SL	50.0	13.8	40.0	40.0			1.260							0.05		0.10	2.97	EXPIC1	1	PIDGOV	4
GOMA_HG1	KENEMA_D	SL	8.0	33.0	6.0	6.0	0.048	0.180	0.882	0.320	0.270	0.048	0.600		4.50	0.05		0.05	2.80	EXST1	1	PIDGOV	2
GOMA_HG2	KENEMA_D	SL	8.0	33.0	6.0	6.0	0.048	0.180	0.882	0.320	0.270	0.048	0.600		4.50	0.05		0.05	2.80	EXST1	1	PIDGOV	2
BO_DI_3G	KENEMA_D	SL	6.0	33.0	5.0	5.0			2.000							0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	1
KINGT1G1	FRTOWN04	SL	9.0	161.0	7.0	7.0			2.000								0.50		2.00	AC1IEEE+	1	DIESEL	1
KINGT1G2	FRTOWN04	SL	8.0	161.0	6.0	6.0			2.000								0.50		2.00	AC1IEEE+	1	DIESEL	1
KINGT2G1	FRTOWN04	SL	6.0	161.0	5.0	5.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	1
KINGT2G2	FRTOWN04	SL	6.0	161.0	5.0	5.0			2.000							0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	1
BLACKHG1	FRTOWN04	SL	9.0	161.0	8.0	8.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	1
BLACKHG2	FRTOWN04	SL	9.0	161.0	8.0	8.0			2.000								0.50		2.00	AC1IEEE+	1	DIESEL	1
BLACKHG3	FRTOWN04	SL	9.0	161.0	8.0	8.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	1

MP-WAPP/4NT/221290/001/00 • Octobre 2011 157/167

Machine	Noeud	Pays	SN	VN	PN turb	PN alt	Rs	Xs	Xd	X'd	X"d	Χq	X'q	X"q	T'do	T''do	T'qo	T"qo	Н	AVR	DATA	GOVERNOR	DATA
Nom	Nom	Nom	MVA	kV	MW	MW	pu	S	S	S	S	MW.s/MVA		SET		SET							
MTCOFFG1	MTCOFFG1	LI	21.0	10.5	16.0	16.0	0.006	0.145	1.260	0.310	0.210	0.006	0.760		6.64	0.05		0.10	2.97	EXPIC1	1	PIDGOV	4
MTCOFFG2	MTCOFFG2	LI	21.0	10.5	16.0	16.0	0.006	0.145	1.260	0.310	0.210	0.006	0.760		6.64	0.05		0.10	2.97	EXPIC1	1	PIDGOV	4
MTCOFFG3	MTCOFFG3	LI	21.0	10.5	16.0	16.0	0.006	0.145	1.260	0.310	0.210	0.006	0.760		6.64	0.05		0.10	2.97	EXPIC1	1	PIDGOV	4
MTCOFFG4	MTCOFFG4	LI	21.0	10.5	16.0	16.0	0.006	0.145	1.260	0.310	0.210	0.006	0.760		6.64	0.05		0.10	2.97	EXPIC1	1	PIDGOV	4
BUCHANG1	BUCHANG1	LI	22.0	10.5	18.0	18.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	GOVCLAS	1
BUCHANG2	BUCHANG2	LI	22.0	10.5	18.0	18.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	GOVCLAS	1
BUSHRD1G	MONROV_D	LI	28.0	33.0	23.0	23.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
BUSHR2G1	MONROV_D	LI	6.0	33.0	5.0	5.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
BUSHR2G2	MONROV_D	LI	6.0	33.0	5.0	5.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
BUSHR2G3	MONROV_D	LI	6.0	33.0	5.0	5.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
BUSHR2G4	MONROV_D	LI	6.0	33.0	5.0	5.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
BUSHR2G5	MONROV_D	LI	6.0	33.0	5.0	5.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
BUSHR2G6	MONROV_D	LI	6.0	33.0	5.0	5.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
BUSHR2G7	MONROV_D	LI	6.0	33.0	5.0	5.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
BUSHR2G8	MONROV_D	LI	6.0	33.0	5.0	5.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
2171AYAM	2171AYAM	CI	13.0	5.5	10.0	10.0	0.005	0.180	1.210	0.330	0.220	0.005	0.700		5.00	0.03		0.05	2.84	UNITROLA	1	MIPREG	1
2172AYAM	2172AYAM	CI	13.0	5.5	10.0	10.0	0.005	0.180	1.210	0.330	0.220	0.005	0.700		5.00	0.03		0.05	2.84	UNITROLA	1	MIPREG	1
2181AYAM	2181AYAM	CI	19.0	5.5	15.0	15.0	0.005	0.180	1.120	0.345	0.225	0.005	0.700		5.00	0.03		0.05	2.84	UNITROLA	2	MIPREG	2
2182AYAM	2182AYAM	CI	19.0	5.5	15.0	15.0	0.005	0.180	1.120	0.345	0.225	0.005	0.700		5.00	0.03		0.05	2.84	UNITROLA	2	MIPREG	2
2092BUYO	2092BUYO	CI	61.0	10.5	55.0	55.0	0.005	0.120	1.010	0.290	0.205	0.005	0.690		3.30	0.06		0.12	3.29	EXST1	1	MIPREG	3
2093BUYO	2093BUYO	CI	61.0	10.5	55.0	55.0	0.005	0.120	1.010	0.290	0.205	0.005	0.690		3.30	0.06		0.12	3.29	EXST1	1	MIPREG	3
2094BUYO	2094BUYO	CI	61.0	10.5	55.0	55.0	0.005	0.120	1.010	0.290	0.205	0.005	0.690		3.30	0.06		0.12	3.29	EXST1	1	MIPREG	3
2042KOSS	2042KOSS	CI	62.0	17.0	35.0	58.5	0.011	0.180	0.900	0.321	0.231	0.011	0.640		5.00	0.03		0.05	3.94	UNITROLP	1	MIPREG	4
2043KOSS	2043KOSS	CI	62.0	17.0	35.0	58.5	0.011	0.180	0.900	0.321	0.231	0.011	0.640		5.00	0.03		0.05	3.94	UNITROLP	1	MIPREG	5
2044KOSS	2044KOSS	CI	62.0	17.0	35.0	58.5	0.011	0.180	0.900	0.321	0.231	0.011	0.640		5.00	0.03		0.05	3.94	UNITROLP	1	MIPREG	6
2032TAAB	2032TAAB	CI	78.0	13.8	65.0	70.2	0.003	0.180	0.900	0.330	0.255	0.003	0.650		5.00	0.04		0.05	4.41	UNITROLP	2	MIPREG	7
2033TAAB	2033TAAB	CI	78.0	13.8	65.0	70.2	0.003	0.180	0.900	0.330	0.255	0.003	0.650		5.00	0.04		0.05	4.41	UNITROLP	2	MIPREG	7
2034TAAB	2034TAAB	CI	78.0	13.8	65.0	70.2	0.003	0.180	0.900	0.330	0.255	0.003	0.650		5.00	0.04		0.05	4.41	UNITROLP	2	MIPREG	7
2022VGT1	2022VGT-	CI	26.0	11.0	24.0	24.0	0.003	0.180	2.580	0.273	0.199	0.003	2.500		3.60	0.04		0.04	2.00	AVR3	1	TURGAZ+	1
2022VGT2	2022VGT-	CI	26.0	11.0	24.0	24.0	0.003	0.180	2.580	0.273	0.199	0.003	2.500		3.60	0.04		0.04	2.00	AVR3	1	TURGAZ+	1
2023VGT1	2023VGT-	CI	26.0	11.0	24.0	24.0	0.003	0.180	2.580	0.273	0.199	0.003	2.500		3.60	0.04		0.04	2.00	AVR3	1	TURGAZ+	1
2023VGT2	2023VGT-	CI	26.0	11.0	24.0	24.0	0.003	0.180	2.580	0.273	0.199	0.003	2.500		3.60	0.04		0.04	2.00	AVR3	1	TURGAZ+	1
2024VRID	2024VRID	CI	43.0	11.0	33.0	33.0	0.003	0.124	2.290	0.209	0.199	0.003	2.072		6.40	0.04		0.03	2.20	AVR3	1	TURGAZ+	1
2025VRID	2025VRID	CI	43.0	11.0	33.0	33.0	0.003	0.124	2.290	0.209	0.199	0.003	2.072		6.40	0.04		0.03	2.20	AVR3	1	TURGAZ+	1
2026VRID	2026VRID	CI	43.0	11.0	33.0	33.0	0.003	0.124	2.290	0.209	0.199	0.003	2.072		6.40	0.04		0.03	2.20	AVR3	1	TURGAZ+	1
2027VRID	2027VRID	CI	139.0	15.0	111.0	111.0	0.002	0.131	1.670	0.240	0.166	0.002	1.603		6.64	0.05		0.08	2.27	AVR3	1	TURGAZ+	1
2028VRID	2028VRID	CI	139.0	15.0	111.0	111.0	0.002	0.131	1.670	0.240	0.166	0.002	1.603		6.64	0.05		0.08	2.27	AVR3	1	TURGAZ+	1
2029VRID	2029VRID	CI	139.0	15.0	111.0	111.0	0.002	0.131	1.670	0.240	0.166	0.002	1.603		6.64	0.05		0.08	2.27	AVR3	1	PMCONST	1
2501AZI	2501AZI	CI	210.0	15.8	148.0	148.0	0.013	0.170	2.530	0.250	0.190	0.013	2.360		10.76	0.02		0.03	2.30	UNITROLP	3	GT13E2	1
2502AZI	2502AZI	CI	210.0	15.8	148.0	148.0	0.013	0.170	2.530	0.250	0.190	0.013	2.360		10.76	0.02		0.03	2.30	UNITROLP	3	GT13E2	1
20NGTAG8	20NGTAG8	CI	139.0	15.0	111.0	111.0	0.002	0.131	1.670	0.240	0.166	0.002	1.603		6.64	0.05		0.08	2.27	AVR3	1	TURGAZ+	4
20NTAG82	20NTAG82	CI	139.0	15.0	111.0	111.0	0.002	0.131	1.670	0.240	0.166	0.002	1.603		6.64	0.05		0.08	2.27	AVR3	1	TURGAZ+	4
20NTAG83	20NTAG83	CI	139.0	15.0	111.0	111.0	0.002	0.131	1.670	0.240	0.166	0.002	1.603		6.64	0.05		0.08	2.27	AVR3	1	PMCONST	1

158/167

Machine	Noeud	Pays	SN	VN	PN turb	PN alt	Rs	Xs	Xd	X'd	X''d	Χq	X'q	X"q	T'do	T''do	T'qo	T"qo	Н	AVR	DATA	GOVERNOR	DATA
Nom	Nom	Nom	MVA	kV	MW	MW	pu	pu	S	S	S	S	MW.s/MVA		SET		SET						
2NEWCC-1	2NEWCC-1	CI	210.0	15.8	148.0	148.0	0.013	0.170	2.530	0.250	0.190	0.013	2.360		10.76	0.02		0.03	2.30	AVR3	1	TURGAZ+	3
2NEWCC-2	2NEWCC-2	CI	210.0	15.8	148.0	148.0	0.013	0.170	2.530	0.250	0.190	0.013	2.360		10.76	0.02		0.03	2.30	AVR3	1	TURGAZ+	3
FAYE_H_G	20FAYE90	CI	6.0	90.0	5.0	5.0	0.048	0.180	0.882	0.320	0.270	0.048	0.600		4.50	0.05		0.05	2.80	EXST1	1	PIDGOV	2
4KOS1_11	4KOS1_11	BU	5.0	11.0	4.0	4.0	0.010	0.120	1.350	0.209	0.135	0.010	0.670		3.25	0.05		0.06	5.08	IEEET1	2	TGOV1	1
4KOS2_11	4KOS2_11	BU	8.0	11.0	6.0	6.0	0.010	0.120	1.700	0.260	0.181	0.010	0.850		2.95	0.05		0.06	5.08	IEEET1	2	TGOV1	1
4KOS3_11	4KOS3_11	BU	8.0	11.0	6.0	6.0	0.010	0.120	1.700	0.260	0.181	0.010	0.850		2.95	0.05		0.06	5.08	IEEET1	2	TGOV1	1
4KOS4_11	4KOS4_11	BU	10.0	11.0	8.0	8.0	0.004	0.100	1.992	0.274	0.175	0.004	0.961		6.52	0.02		0.13	5.08	IEEET1	2	TGOV1	2
4KOS5_11	4KOS5_11	BU	10.0	11.0	8.0	8.0	0.004	0.100	1.992	0.274	0.175	0.004	0.961		6.52	0.02		0.13	5.08	IEEET1	2	TGOV1	2
4KOS6_11	4KOS6_11	BU	23.0	11.0	18.0	18.0	0.003	0.100	1.596	0.266	0.156	0.003	0.794		7.61	0.03		0.14	5.08	IEEET1	2	TGOV1	3
4KOS1_15	4KOSSO15	BU	8.0	15.0	6.0	6.0	0.010	0.120	1.284	0.220	0.150	0.010	0.681		3.10	0.02		0.06	5.08	IEEET1	2	TGOV1	4
4KOS2_15	4KOSSO15	BU	8.0	15.0	6.0	6.0	0.010	0.120	1.284	0.220	0.150	0.010	0.681		3.10	0.02		0.06	5.08	IEEET1	2	TGOV1	4
40UA11_6	40UA11_6	BU	3.0	6.3	3.0	3.0	0.010	0.120	2.250	0.300	0.130	0.010	0.680		3.20	0.05		0.06	5.08	IEEET1	2	TGOV1	5
40UA12_6	40UA12_6	BU	3.0	6.3	3.0	3.0	0.010	0.120	2.250	0.300	0.130	0.010	0.680		3.20	0.05		0.06	5.08	IEEET1	2	TGOV1	5
40UA13_6	40UA13_6	BU	4.0	5.5	4.0	4.0	0.010	0.120	2.250	0.300	0.130	0.010	0.680		3.20	0.05		0.06	5.08	IEEET1	2	TGOV1	5
40U1_215	40UAG215	BU	4.0	15.0	3.0	3.0	0.010	0.120	2.250	0.350	0.150	0.010	0.600		3.20	0.05		0.06	5.08	IEEET1	2	TGOV1	6
40U2_215	40UAG215	BU	4.0	15.0	3.0	3.0	0.010	0.120	2.250	0.350	0.150	0.010	0.600		3.20	0.05		0.06	5.08	IEEET1	2	TGOV1	6
40U3_215	40UAG215	BU	4.0	15.0	3.0	3.0	0.010	0.120	2.250	0.350	0.150	0.010	0.600		3.20	0.05		0.06	5.08	IEEET1	2	TGOV1	6
40UA21_5	40UA21_5	BU	7.0	5.5	5.0	5.0	0.010	0.120	1.800	0.380	0.250	0.010	1.070		5.62	0.05		0.06	5.08	IEEET1	2	TGOV1	7
40UA22_5	40UA22_5	BU	7.0	5.5	5.0	5.0	0.010	0.120	1.800	0.380	0.250	0.010	1.070		5.62	0.05		0.06	5.08	IEEET1	2	TGOV1	7
40UA23_5	40UA23_5	BU	7.0	5.5	5.0	5.0	0.010	0.120	1.800	0.380	0.250	0.010	1.070		5.62	0.05		0.06	5.08	IEEET1	2	TGOV1	7
40UA24_5	40UA24_5	BU	10.0	5.5	9.0	9.0	0.010	0.120	2.250	0.375	0.283	0.010	0.550		5.00	0.03		0.06	5.08	IEEET1	2	TGOV1	8
40UA25_5	40UA25_5	BU	10.0	5.5	9.0	9.0	0.010	0.120	2.250	0.375	0.283	0.010	0.550		5.00	0.03		0.06	5.08	IEEET1	2	TGOV1	8
4BOB11_5	4BOB11_5	BU	1.0	5.5	1.0	1.0	0.010	0.120	1.300	0.200	0.150	0.010	0.670		5.00	0.05		0.06	5.08	IEEET1	2	TGOV1	9
4BOB12_5	4BOB12_5	BU	2.0	5.5	2.0	2.0	0.010	0.120	1.230	0.200	0.150	0.010	0.670		5.00	0.05		0.06	5.08	IEEET1	2	TGOV1	9
4BOB13_5	4BOB13_5	BU	2.0	5.5	2.0	2.0	0.010	0.120	1.230	0.200	0.150	0.010	0.670		5.00	0.05		0.06	5.08	IEEET1	2	TGOV1	9
4BOB14_5	4BOB14_5	BU	2.0	5.5	2.0	2.0	0.010	0.120	1.230	0.200	0.150	0.010	0.670		5.00	0.05		0.06	5.08	IEEET1	2	TGOV1	9
4BOB21_5	4BOB21_5	BU	5.0	5.5	4.0	4.0	0.010	0.120	1.371	0.220	0.140	0.010	0.680		3.20	0.05		0.06	5.08	IEEET1	2	TGOV1	10
4BOB22_5	4BOB22_5	BU	5.0	5.5	4.0	4.0	0.010	0.120	1.371	0.220	0.140	0.010	0.680		3.20	0.05		0.06	5.08	IEEET1	2	TGOV1	10
4BOB23_5	4BOB23_5	BU	5.0	5.5	4.0	4.0	0.010	0.120	1.371	0.220	0.140	0.010	0.680		3.20	0.05		0.06	5.08	IEEET1	2	TGOV1	11
4BOB24_5	4BOB24_5	BU	5.0	5.5	4.0	4.0	0.010	0.120	1.371	0.220	0.140	0.010	0.680		3.20	0.05		0.06	5.08	IEEET1	2	TGOV1	11
4BOB25_5	4BOB25_5	BU	5.0	5.5	4.0	4.0	0.010	0.120	1.371	0.220	0.140	0.010	0.680		3.20	0.05		0.06	5.08	IEEET1	2	TGOV1	11
KOMSILG1	KOMSILG1	BU	22.0	11.0	18.0	18.0	0.003	0.100	1.596	0.266	0.156	0.003	0.794		7.61	0.03		0.14	5.08	IEEET1	2	TGOV1	3
KOMSILG2	KOMSILG2	BU	16.0	11.0	12.0	12.0	0.003	0.100	1.596	0.266	0.156	0.003	0.794		7.61	0.03		0.14	5.08	IEEET1	2	TGOV1	3
KOMSILG3	KOMSILG3	BU	16.0	11.0	12.0	12.0	0.003	0.100	1.596	0.266	0.156	0.003	0.794		7.61	0.03		0.14	5.08	IEEET1	2	TGOV1	3
KOMSILG4	KOMSILG4	BU	16.0	11.0	12.0	12.0	0.003	0.100	1.596	0.266	0.156	0.003	0.794		7.61	0.03		0.14	5.08	IEEET1	2	TGOV1	3
KOMSILG5	KOMSILG5	BU	22.0	11.0	18.0	18.0	0.003	0.100	1.596	0.266	0.156	0.003	0.794		7.61	0.03		0.14	5.08	IEEET1	2	TGOV1	3
KOMSILG6	KOMSILG6	BU	22.0	11.0	18.0	18.0	0.003	0.100	1.596	0.266	0.156	0.003	0.794		7.61	0.03		0.14	5.08	IEEET1	2	TGOV1	3
BOB2_2G1	BOB2_2G1	BU	12.0	11.0	10.0	10.0	0.003	0.100	1.596	0.266	0.156	0.003	0.794		7.61	0.03		0.14	5.08	IEEET1	2	TGOV1	3
BOB2_2G2	BOB2_2G2	BU	12.0	11.0	10.0	10.0	0.003	0.100	1.596	0.266	0.156	0.003	0.794		7.61	0.03		0.14	5.08	IEEET1	2	TGOV1	3
4BAGRE16	4BAGRE_6	BU	9.0	6.6	8.0	8.0	0.010	0.100	1.090	0.286	0.206	0.010	0.630		2.90	0.06		0.06	2.83	IEEET1	1	HYGOV	1
4BAGRE26	4BAGRE_6	BU	9.0	6.6	8.0	8.0	0.010	0.100	1.090	0.286	0.206	0.010	0.636		2.90	0.06		0.06	2.83	IEEET1	1	HYGOV	1
4KOMPI16	4KOMPI_6	BU	8.0	6.6	7.0	7.0	0.010	0.200	1.000	0.350	0.220	0.010	0.660		2.30	0.03		0.07	3.28	IEEET1	1	HYGOV	3
4KOMPI26	4KOMPI_6	BU	8.0	6.6	7.0	7.0	0.010	0.200	1.000	0.350	0.220	0.010	0.660		2.30	0.03		0.07	3.28	IEEET1	1	HYGOV	3

Machine	Noeud	Pays	SN	VN	PN turb	PN alt	Rs	Xs	Xd	X'd	X"d	Χq	X'q	X"q	T'do	T''do	T'qo	T''qo	Н	AVR	DATA	GOVERNOR	DATA
Nom	Nom	Nom	MVA	kV	MW	MW	pu	S	S	S	S	MW.s/MVA		SET		SET							
MANASEMA	OUAGAE08	BU	25.0	90.0	20.0	20.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	GOVCLAS	1
AKOSOMG1	1011AKOS	GH	180.0	14.4	150.0	170.0	0.006	0.145	1.260	0.310	0.210	0.006	0.760		6.64	0.05		0.10	2.97	EXPIC1	1	PIDGOV	4
AKOSOMG2	1012AKOS	GH	180.0	14.4	150.0	170.0	0.006	0.145	1.260	0.310	0.210	0.006	0.760		6.64	0.05		0.10	2.97	EXPIC1	1	PIDGOV	4
AKOSOMG3	1013AKOS	GH	180.0	14.4	150.0	170.0	0.006	0.145	1.260	0.310	0.210	0.006	0.760		6.64	0.05		0.10	2.97	EXPIC1	1	PIDGOV	4
AKOSOMG4	1014AKOS	GH	180.0	14.4	150.0	170.0	0.006	0.145	1.260	0.310	0.210	0.006	0.760		6.64	0.05		0.10	2.97	EXPIC1	1	PIDGOV	4
AKOSOMG5	1015AKOS	GH	180.0	14.4	150.0	170.0	0.006	0.145	1.260	0.310	0.210	0.006	0.760		6.64	0.05		0.10	2.97	EXPIC1	1	PIDGOV	4
AKOSOMG6	1016AKOS	GH	180.0	14.4	150.0	170.0	0.006	0.145	1.260	0.310	0.210	0.006	0.760		6.64	0.05		0.10	2.97	EXPIC1	1	PIDGOV	4
BUIG1	1501G1	GH	148.0	14.4	133.0	133.0	0.006	0.145	1.260	0.310	0.210	0.006	0.760		6.64	0.05		0.10	2.97	EXPIC1	1	PIDGOV	3
BUIG2	1502G2	GH	148.0	14.4	133.0	133.0	0.006	0.145	1.260	0.310	0.210	0.006	0.760		6.64	0.05		0.10	2.97	EXPIC1	1	PIDGOV	3
BUIG3	1503G3	GH	148.0	14.4	133.0	133.0	0.006	0.145	1.260	0.310	0.210	0.006	0.760		6.64	0.05		0.10	2.97	EXPIC1	1	PIDGOV	3
KPONGHG1	1191KPON	GH	44.0	13.8	35.0	40.0	0.048	0.180	0.882	0.320	0.270	0.048	0.600		4.50	0.05		0.05	2.80	EXST1	1	PIDGOV	2
KPONGHG2	1192KPON	GH	44.0	13.8	35.0	40.0	0.048	0.180	0.882	0.320	0.270	0.048	0.600		4.50	0.05		0.05	2.80	EXST1	1	PIDGOV	2
KPONGHG3	1193KPON	GH	44.0	13.8	35.0	40.0	0.048	0.180	0.882	0.320	0.270	0.048	0.600		4.50	0.05		0.05	2.80	EXST1	1	PIDGOV	2
KPONGHG4	1194KPON	GH	44.0	13.8	35.0	40.0	0.048	0.180	0.882	0.320	0.270	0.048	0.600		4.50	0.05		0.05	2.80	EXST1	1	PIDGOV	2
ABOAT1G1	1321ABOA	GH	138.0	13.8	110.0	110.0	0.005	0.178	2.426	0.327	0.214	0.005	2.344	0.412	7.64	0.02	0.60	0.04	7.78	ST4B	1	GAST	1
ABOAT1G2	1322ABOA	GH	138.0	13.8	110.0	110.0	0.005	0.178	2.426	0.327	0.214	0.005	2.344	0.412	7.64	0.02	0.60	0.04	7.78	ST4B	1	GAST	1
ABOAT1ST	1323ABOA	GH	138.0	13.8	110.0	110.0	0.005	0.183	2.488	0.335	0.220	0.005	2.403	0.419	7.64	0.02	0.60	0.04	4.84	ST4B	1	PMCONST	1
ABOAT2G1	1324ABOA	GH	138.0	13.8	110.0	110.0	0.005	0.178	2.426	0.327	0.214	0.005	2.344	0.412	7.64	0.02	0.60	0.04	7.78	ST4B	1	GAST	1
ABOAT2G2	1325ABOA	GH	138.0	13.8	110.0	110.0	0.005	0.178	2.426	0.327	0.214	0.005	2.344	0.412	7.64	0.02	0.60	0.04	7.78	ST4B	1	GAST	1
ABOAT2ST	1326ABOA	GH	138.0	13.8	110.0	110.0	0.005	0.183	2.488	0.335	0.220	0.005	2.403	0.419	7.64	0.02	0.60	0.04	4.84	ST4B	1	PMCONST	1
TEMAT1G1	1471TT1P	GH	138.0	13.8	110.0	110.0	0.003	0.130	1.980	0.251	0.145	0.003	1.810	0.359	1.31	0.04	0.64	0.04	5.00	ST4B	1	GAST	2
TEMAT1G2	1472TT1P	GH	138.0	13.8	110.0	110.0	0.003	0.130	1.980	0.251	0.145	0.003	1.810	0.359	1.31	0.04	0.64	0.04	5.00	ST4B	1	GAST	2
TEMAT1ST	1473TT1P	GH	138.0	13.8	110.0	110.0	0.005	0.183	2.488	0.335	0.220	0.005	2.403	0.419	7.64	0.02	0.60	0.04	4.84	ST4B	1	PMCONST	1
DOMIT1G1	1758G	GH	138.0	13.8	110.0	110.0	0.005	0.178	2.426	0.327	0.214	0.005	2.344	0.412	7.64	0.02	0.60	0.04	7.78	ST4B	1	GAST	8
DOMIT1G2	1757G	GH	138.0	13.8	110.0	110.0	0.005	0.178	2.426	0.327	0.214	0.005	2.344	0.412	7.64	0.02	0.60	0.04	7.78	ST4B	1	GAST	8
BARGE_G1	1601OPB-	GH	78.0	13.8	62.0	62.0	0.003	0.130	1.980	0.251	0.145	0.003	1.810	0.359	1.31	0.04	0.64	0.04	5.00	ST4B	1	GAST	2
BARGE G2	1602OPB-	GH	78.0	13.8	62.0	62.0	0.003	0.130	1.980	0.251	0.145	0.003	1.810	0.359	1.31	0.04	0.64	0.04	5.00	ST4B	1	GAST	2
TEMAT2G3	1040TGEN	GH	10.0	11.0	8.0	8.0	0.004	0.079	2.041	0.256	0.171	0.004	1.048		5.21	0.07		0.22	3.00	ST4B	1	GAST	4
TEMAT2G4	1040TGEN	GH	10.0	11.0	8.0	8.0	0.004	0.079	2.041	0.256	0.171	0.004	1.048		5.21	0.07		0.22	3.00	ST4B	1	GAST	4
TEMAT2G5	1040TGEN	GH	10.0	11.0	8.0	8.0	0.004	0.079	2.041	0.256	0.171	0.004	1.048		5.21	0.07		0.22	3.00	ST4B	1	GAST	4
TEMAT2G1	1040TGEN	GH	16.0	11.0	13.0	13.0	0.006	0.124	2.318	0.348	0.244	0.006	1.186		5.58	0.05		0.14	3.00	ST4B	1	GAST	3
TEMAT2G2	1040TGEN	GH	16.0	11.0	13.0	13.0	0.006	0.124	2.318	0.348	0.244	0.006	1.186		5.58	0.05		0.14	3.00	ST4B	1	GAST	3
TEMAMRP1	1040TEMA	GH	56.0	161.0	45.0	45.0	0.002	0.100	2.510	0.308	0.217	0.002	2.300	0.370	8.20	0.05	1.00	0.05	3.00	ST4B	1	GAST	1
TEMAMRP2	1040TEMA	GH	25.0	161.0	20.0	20.0	0.002	0.100	2.510	0.308	0.217	0.002	2.300	0.370	8.20	0.05	1.00	0.05	3.00	ST4B	1	GAST	1
TEMAMRP3	1040TEMA	GH	19.0	161.0	15.0	15.0	0.002	0.100	2.510	0.308	0.217	0.002	2.300	0.370	8.20	0.05	1.00	0.05	3.00	ST4B	1	GAST	1
SUNASOG1	1701ASO1	GH	44.0	13.8	35.0	35.0	0.002	0.100	2.510	0.308	0.217	0.002	2.300	0.370	8.20	0.05	1.00	0.05	5.00	EXST1	1	GAST	5
SUNASOG2	1701ASO2	GH	44.0	13.8	35.0	35.0								0.370					5.00	EXST1	1	GAST	5
SUNASOG3		GH	44.0	13.8	35.0	35.0								0.370					5.00	EXST1	1	PMCONST	1
SUNASOG4		GH	44.0	13.8	35.0	35.0								0.370					5.00	EXST1	1	GAST	5
	1701ASO5	GH	44.0	13.8	35.0	35.0								0.370					5.00	EXST1	1	GAST	5
SUNASOG6		GH	44.0	13.8	35.0	35.0								0.370					5.00	EXST1	1	PMCONST	1
ABOA3CC1	ABOA3CC1	GH	175.0	13.8	140.0	140.0								0.359			0.64		5.00	ST4B	1	GAST	2
	SASO2CC1	GH	225.0	13.8	180.0	180.0								0.359					5.00	ST4B	1	GAST	2

Machine	Noeud	Pays	SN	VN	PN turb	PN alt	Rs	Xs	Xd	X'd	X"d	Xq	X'q	X"q	T'do	T''do	T'qo	T''qo	Н	AVR	DATA	GOVERNOR	DATA
Nom	Nom	Nom	MVA	kV	MW	MW	pu	S	S	S	S	MW.s/MVA		SET		SET							
SASO2CC2	SASO2CC2	GH	225.0	13.8	180.0	180.0	0.003	0.130	1.980	0.251	0.145	0.003	1.810	0.359	1.31	0.04	0.64	0.04	5.00	ST4B	1	GAST	2
3061NANG	3061NANG	TB	36.0	10.3	33.0	33.0	0.011	0.167	0.994	0.268	0.185	0.011	0.767		8.00	0.04		0.04	2.80	EXST1	2	HYGOV	2
3062NANG	3062NANG	TB	36.0	10.3	33.0	33.0	0.011	0.167	0.994	0.268	0.185	0.011	0.767		8.00	0.04		0.04	2.80	EXST1	2	HYGOV	2
3NGLOG12	3NGLOG12	TB	25.0	11.0	20.0	20.0	0.006	0.100	0.994	0.294	0.210	0.006	0.700	0.400	8.00	0.05	0.71	0.04	3.00	IEEET2	1	GAST	6
3NEWIPP	3NEWIPP	TB	25.0	11.0	20.0	20.0	0.006	0.100	0.994	0.294	0.210	0.006	0.700	0.400	8.00	0.05	0.71	0.04	3.00	IEEET2	1	GAST	6
CONTOU1G	CONTOU1G	ТВ	21.0	15.0	17.0	17.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	TURGAZ+	3
CONTOU2G	CONTOU1G	TB	21.0	15.0	17.0	17.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	TURGAZ+	3
CONTOU3G	CONTOU1G	TB	21.0	15.0	17.0	17.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	TURGAZ+	3
CONTOU4G	CONTOU1G	TB	21.0	15.0	17.0	17.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	TURGAZ+	3
CONTOU5G	CONTOU1G	TB	21.0	15.0	17.0	17.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	TURGAZ+	3
CONTOU6G	CONTOU1G	TB	21.0	15.0	17.0	17.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	TURGAZ+	3
AKPAKP1G	AKPAKP1G	TB	38.0	15.0	30.0	30.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
NATITI1G	NATITI1G	ТВ	15.0	15.0	12.0	12.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
PORTON1G	PORTON1G	TB	15.0	15.0	12.0	12.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
PARAKO1G	PARAKO1G	TB	32.0	15.0	25.0	25.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
LOME_1G	LOME_1G	TB	20.0	15.0	16.0	16.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
CEETKARA	KARA_1G	TB	20.0	15.0	16.0	16.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
SOKODE1G	KARA_1G	TB	5.0	15.0	4.0	4.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	3
CAI1G	CAI1G	TB	12.0	15.0	10.0	10.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	TURGAZ+	3
CAI2G	CAI2G	TB	12.0	15.0	10.0	10.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	TURGAZ+	3
CAI3G	CAI3G	TB	12.0	15.0	10.0	10.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	TURGAZ+	3
CAI4G	CAI4G	TB	12.0	15.0	10.0	10.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	TURGAZ+	3
CAI5G	CAI5G	TB	12.0	15.0	10.0	10.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	TURGAZ+	3
CAI6G	CAI6G	TB	12.0	15.0	10.0	10.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	TURGAZ+	3
CAI7G	CAI7G	TB	12.0	15.0	10.0	10.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	TURGAZ+	3
CAI8G	CAI8G	TB	12.0	15.0	10.0	10.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	TURGAZ+	3
IPPTHE1G	IPPTHE1G	ТВ	125.0	15.0	100.0	100.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	TURGAZ+	3
MA_GLE1G	MA_GLE1G	ТВ	188.0	15.0	150.0	150.0	0.000	0.106	2.170	0.210	0.133	0.000	1.953	0.210	5.00	0.05	1.00	0.05	4.00	ST1IEEE	1	GAST	2
MA GLE2G	MA GLE2G	ТВ	188.0	15.0	150.0	150.0	0.000	0.106	2.170	0.210	0.133	0.000	1.953	0.210	5.00	0.05	1.00	0.05	4.00	ST1IEEE	1	GAST	2
MA GLE3G	MA GLE3G	ТВ	188.0	15.0	150.0	150.0	0.000	0.106	2.170	0.210	0.133	0.000	1.953	0.210	5.00	0.05	1.00	0.05	4.00	ST1IEEE	1	PMCONST	1
GOUDELG1	GOUDELG1	NR	8.0	20.0	6.0	6.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	1
GOUDELG2	GOUDELG2	NR	8.0	20.0	6.0	6.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	1
GOUDELG3	GOUDELG3	NR	8.0	20.0	6.0	6.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	1
GOUDELG4	GOUDELG4	NR	8.0	20.0	6.0	6.0	0.005	0.140	2.000	0.300	0.200	0.005	1.900	0.275	6.20	0.03	0.50	0.03	2.00	AC1IEEE+	1	DIESEL	1
TAG1_NY2	NIAM21_D	NR	12.0	20.0	10.0	10.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	TURGAZ+	3
TAG2 NY2	NIAM21 D	NR	12.0	20.0	10.0	10.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	TURGAZ+	3
TAG3_NY2	NIAM21_D	NR	12.0	20.0	10.0	10.0				0.300									2.00	AC1IEEE+	1	TURGAZ+	3
SALKADAG	SALKAD_G	NR	75.0	10.5	60.0	60.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	GOVCLAS	1
ZINDCC1G	ZINDER06	NR	75.0	132.0	60.0	60.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	CCGOV	1
SONIC1 G	SONIC1 D	NR	20.0	20.0	16.0	16.0				0.300									2.00	AC1IEEE+	1	GOVCLAS	1
SONIC2 G	SONIC2 D	NR	20.0	20.0	16.0	16.0				0.300									2.00	AC1IEEE+	1	GOVCLAS	1
SONIC3 G	SONIC3 D	NR	20.0	20.0	16.0	16.0				0.300							0.50		2.00	AC1IEEE+	1	GOVCLAS	1
SONIC4 G	SONIC4 D	NR	20.0	20.0	16.0	16.0				0.300									2.00	AC1IEEE+	1	GOVCLAS	1

Machine	Noeud	Pays	SN	VN	PN turb	PN alt	Rs	Xs	Xd	X'd	X"d	Xq	X'q	X"q	T'do	T''do	T'qo	T"qo	Н	AVR	DATA	GOVERNOR	DATA
Nom	Nom	Nom	MVA	kV	MW	MW	pu	S	S	S	S	MW.s/MVA		SET		SET							
NIGERSOL	NIAM2_06	NR	75.0	132.0	50.0	50.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	GOVCLAS	1
AFAMGT13	AFAMGT13	NI	110.0	10.5	88.0	88.0	0.000	0.088	2.170	0.210	0.154	0.000	1.953	0.210	5.00	0.05	1.00	0.05	6.00	ST1IEEE	1	TURGAZ+	3
AFAMGT14	AFAMGT14	NI	110.0	10.5	88.0	88.0	0.000	0.088	2.170	0.210	0.154	0.000	1.953	0.210	5.00	0.05	1.00	0.05	6.00	ST1IEEE	1	TURGAZ+	3
AFAMGT15	AFAMGT15	NI	110.0	11.5	88.0	88.0	0.000	0.081	2.370	0.210	0.137	0.000	1.953	0.210	5.00	0.05	1.00	0.05	6.00	ST1IEEE	1	TURGAZ+	3
AFAMGT16	AFAMGT16	NI	110.0	11.5	88.0	88.0	0.000	0.081	2.370	0.210	0.137	0.000	1.953	0.210	5.00	0.05	1.00	0.05	6.00	ST1IEEE	1	TURGAZ+	3
AFAMGT17	AFAMGT17	NI	110.0	11.5	88.0	88.0	0.000	0.081	2.370	0.210	0.137	0.000	1.953	0.210	5.00	0.05	1.00	0.05	6.00	ST1IEEE	1	TURGAZ+	3
AFAMGT18	AFAMGT18	NI	110.0	11.5	88.0	88.0	0.000	0.081	2.370	0.210	0.137	0.000	1.953	0.210	5.00	0.05	1.00	0.05	6.00	ST1IEEE	1	TURGAZ+	3
AFAMGT19	AFAMGT19	NI	163.0	15.8	138.0	138.0	0.000	0.175	2.750	0.275	0.200	0.000	2.230	0.210	5.00	0.06	1.00	0.49	6.00	ST1IEEE	1	TURGAZ+	3
AFAMGT20	AFAMGT20	NI	163.0	15.8	138.0	138.0	0.000	0.175	2.750	0.275	0.200	0.000	2.230	0.210	5.00	0.06	1.00	0.49	6.00	ST1IEEE	1	TURGAZ+	3
DELTAG03	DELTAG03	NI	30.0	11.5	24.0	24.0	0.000	0.100	1.800	0.210	0.150	0.000	1.370		5.46	0.04		0.49	6.45	AC1IEEE+	1	TURGAZ+	3
DELTAG04	DELTAG04	NI	30.0	11.5	24.0	24.0	0.000	0.100	1.800	0.210	0.150	0.000	1.370		5.46	0.04		0.49	6.45	AC1IEEE+	1	TURGAZ+	3
DELTAG05	DELTAG05	NI	30.0	11.5	24.0	24.0	0.000	0.100	1.800	0.210	0.150	0.000	1.370		5.46	0.04		0.49	6.45	AC1IEEE+	1	TURGAZ+	3
DELTAG06	DELTAG06	NI	30.0	11.5	24.0	24.0	0.000	0.100	1.800	0.210	0.150	0.000	1.370		5.46	0.04		0.49	6.45	AC1IEEE+	1	TURGAZ+	3
DELTAG07	DELTAG07	NI	30.0	11.5	24.0	24.0	0.000	0.105	1.440	0.168	0.129	0.000	1.370		5.46	0.04		0.49	6.45	AC1IEEE+	1	TURGAZ+	3
DELTAG08	DELTAG08	NI	30.0	11.5	24.0	24.0	0.000	0.105	1.440	0.168	0.129	0.000	1.370		5.46	0.04		0.49	6.45	AC1IEEE+	1	TURGAZ+	3
DELTAG09	DELTAG09	NI	30.0	11.5	24.0	24.0	0.000	0.105	1.440	0.168	0.129	0.000	1.370		5.46	0.04		0.49	6.45	AC1IEEE+	1	TURGAZ+	3
DELTAG10	DELTAG10	NI	30.0	11.5	24.0	24.0	0.000	0.105	1.440	0.168	0.129	0.000	1.370		5.46	0.04		0.49	6.45	AC1IEEE+	1	TURGAZ+	3
DELTAG11	DELTAG11	NI	30.0	11.5	24.0	24.0	0.000	0.105	1.440	0.168	0.129	0.000	1.370		5.46	0.04		0.49	6.45	AC1IEEE+	1	TURGAZ+	3
DELTAG12	DELTAG12	NI	30.0	11.5	24.0	24.0	0.000	0.105	1.440	0.168	0.129	0.000	1.370		5.46	0.04		0.49	6.45	AC1IEEE+	1	TURGAZ+	3
DELTAG13	DELTAG13	NI	30.0	11.5	24.0	24.0	0.000	0.105	1.440	0.168	0.129	0.000	1.370		5.46	0.04		0.49	6.45	AC1IEEE+	1	TURGAZ+	3
DELTAG14	DELTAG14	NI	30.0	11.5	24.0	24.0	0.000	0.105	1.440	0.168	0.129	0.000	1.370		5.46	0.04		0.49	6.45	AC1IEEE+	1	TURGAZ+	3
DELTAG15	DELTAG15	NI	134.0	11.5	114.0	114.0	0.004	0.181	1.905	0.319	0.226	0.004	1.835	0.542	3.71	0.03	0.35	0.08	9.60	AC1IEEE+	1	TURGAZ+	3
DELTAG16	DELTAG16	NI	134.0	11.5	114.0	114.0	0.004	0.181	1.905	0.319	0.226	0.004	1.835	0.542	3.71	0.03	0.35	0.08	9.60	AC1IEEE+	1	TURGAZ+	3
DELTAG17	DELTAG17	NI	134.0	11.5	114.0	114.0	0.004	0.181	1.905	0.319	0.226	0.004	1.835	0.542	3.71	0.03	0.35	0.08	9.60	AC1IEEE+	1	TURGAZ+	3
DELTAG18	DELTAG18	NI	134.0	11.5	114.0	114.0	0.004	0.181	1.905	0.319	0.226	0.004	1.835	0.542	3.71	0.03	0.35	0.08	9.60	AC1IEEE+	1	TURGAZ+	3
DELTAG19	DELTAG19	NI	134.0	11.5	114.0	114.0						0.004							9.60	AC1IEEE+	1	TURGAZ+	3
DELTAG20	DELTAG20	NI	134.0	11.5	114.0	114.0	0.004	0.181	1.905	0.319	0.226	0.004	1.835	0.542	3.71	0.03	0.35	0.08	9.60	AC1IEEE+	1	TURGAZ+	3
EGBINST1	EGBINST1	NI	246.0	16.0	221.0	221.0						0.004							6.50	ST1IEEE	1	GOVCLAS	1
EGBINST2	EGBINST2	NI	246.0	16.0	221.0	221.0						0.004							6.50	ST1IEEE	1	GOVCLAS	1
EGBINST3	EGBINST3	NI	246.0	16.0	221.0	221.0						0.004							6.50	ST1IEEE	1	GOVCLAS	1
EGBINST4	EGBINST4	NI	246.0	16.0	221.0	221.0						0.004							6.50	ST1IEEE	1	GOVCLAS	1
EGBINST5	EGBINST5	NI	246.0	16.0	221.0	221.0						0.004							6.50	ST1IEEE	1	GOVCLAS	1
EGBINST6	EGBINST6	NI	246.0	16.0	221.0	221.0						0.004							6.50	ST1IEEE	1	GOVCLAS	1
EGBINGT1	EGBINGT1	NI	39.0	10.5	31.0	31.0						0.004				0.06	1.50	0.49	3.10	ST1IEEE	1	TURGAZ+	3
EGBINGT2	EGBINGT2	NI	39.0	10.5	31.0	31.0						0.004					1.50		3.10	ST1IEEE	1	TURGAZ+	3
EGBINGT3	EGBINGT3	NI	39.0	10.5	31.0	31.0						0.004							3.10	ST1IEEE	1	TURGAZ+	3
EGBINGT4	EGBINGT4	NI	40.0	10.5	32.0	32.0	0.004	0.175	2.750	0.275	0.200	0.004	2.200	0.420	9.50	0.06	1.50	0.49	3.10	ST1IEEE	1	TURGAZ+	3
EGBINGT5	EGBINGT5	NI	40.0	10.5	32.0	32.0						0.004							3.10	ST1IEEE	1	TURGAZ+	3
EGBINGT6	EGBINGT6	NI	40.0	10.5	32.0	32.0	0.004	0.175	2.750	0.275	0.200	0.004	2.200	0.420	9.50	0.06	1.50	0.49	3.10	ST1IEEE	1	TURGAZ+	3
EGBINGT7	EGBINGT7	NI	40.0	10.5	36.0	36.0						0.004							3.10	ST1IEEE	1	TURGAZ+	3
EGBINGT8	EGBINGT8	NI	40.0	10.5	36.0	36.0						0.004							3.10	ST1IEEE	1	TURGAZ+	3
EGBINGT9	EGBINGT9	NI	40.0	10.5	36.0	36.0						0.004					1.50		3.10	ST1IEEE	1	TURGAZ+	3
JEBBGH1	JEBBGH1	NI	119.0	16.0	101.0	101.0	0.004	0.230	0.650	0.480	0.240	0.004	0.440		5.20	0.05		0.10	3.25	AC1IEEE+	1	GOVHYDR	3

Machine	Noeud	Pays	SN	VN	PN turb	PN alt	Rs	Xs	Xd	X'd	X"d	Χq	X'q	X''q	T'do	T"do	T'qo	T"qo	Н	AVR	DATA	GOVERNOR	DATA
Nom	Nom	Nom	MVA	kV	MW	MW	pu	S	S	S	S	MW.s/MVA		SET		SET							
JEBBGH2	JEBBGH2	NI	119.0	16.0	101.0	101.0	0.004	0.230	0.650	0.480	0.240	0.004	0.440		5.20	0.05		0.10	3.25	AC1IEEE+	1	GOVHYDR	3
JEBBGH3	JEBBGH3	NI	119.0	16.0	101.0	101.0	0.004	0.230	0.650	0.480	0.240	0.004	0.440		5.20	0.05		0.10	3.25	AC1IEEE+	1	GOVHYDR	3
JEBBGH4	JEBBGH4	NI	119.0	16.0	101.0	101.0	0.004	0.230	0.650	0.480	0.240	0.004	0.440		5.20	0.05		0.10	3.25	AC1IEEE+	1	GOVHYDR	3
JEBBGH5	JEBBGH5	NI	119.0	16.0	101.0	101.0	0.004	0.230	0.650	0.480	0.240	0.004	0.440		5.20	0.05		0.10	3.25	AC1IEEE+	1	GOVHYDR	3
JEBBGH6	JEBBGH6	NI	119.0	16.0	101.0	101.0	0.004	0.230	0.650	0.480	0.240	0.004	0.440		5.20	0.05		0.10	3.25	AC1IEEE+	1	GOVHYDR	3
KAING05	KAING05	NI	126.0	16.0	120.0	120.0	0.004	0.150	0.850	0.300	0.240	0.004	0.550		5.60	0.02		0.08	3.25	AC1IEEE+	1	GOVHYDR	1
KAING06	KAING06	NI	126.0	16.0	120.0	120.0	0.004	0.150	0.850	0.300	0.240	0.004	0.550		5.60	0.02		0.08	3.25	AC1IEEE+	1	GOVHYDR	1
KAING07	KAING07	NI	85.0	16.0	81.0	81.0	0.004	0.100	0.760	0.248	0.200	0.004	0.430		6.06	0.04		0.13	3.23	AC1IEEE+	1	GOVHYDR	2
KAING08	KAING08	NI	85.0	16.0	81.0	81.0	0.004	0.100	0.760	0.248	0.200	0.004	0.430		6.06	0.04		0.13	3.23	AC1IEEE+	1	GOVHYDR	2
KAING09	KAING09	NI	85.0	16.0	81.0	81.0	0.004	0.100	0.760	0.248	0.200	0.004	0.430		6.06	0.04		0.13	3.23	AC1IEEE+	1	GOVHYDR	2
KAING10	KAING10	NI	85.0	16.0	81.0	81.0	0.004	0.100	0.760	0.248	0.200	0.004	0.430		6.06	0.04		0.13	3.23	AC1IEEE+	1	GOVHYDR	2
KAING11	KAING11	NI	115.0	16.0	109.0	109.0	0.004	0.130	0.780	0.260	0.220	0.004	0.440		6.50	0.02		0.07	3.45	AC1IEEE+	1	GOVHYDR	2
KAING12	KAING12	NI	115.0	16.0	109.0	109.0	0.004	0.130	0.780	0.260	0.220	0.004	0.440		6.50	0.02		0.07	3.45	AC1IEEE+	1	GOVHYDR	2
SHIRGH1	SHIRGH1	NI	176.0	15.6	150.0	150.0	0.004	0.150	0.800	0.300	0.200	0.004	0.490		5.57	0.02		0.08	3.24	AC1IEEE+	1	GOVHYDR	4
SHIRGH2	SHIRGH2	NI	176.0	15.6	150.0	150.0	0.004	0.150	0.800	0.300	0.200	0.004	0.490		5.57	0.02		0.08	3.24	AC1IEEE+	1	GOVHYDR	4
SHIRGH3	SHIRGH3	NI	176.0	15.6	150.0	150.0	0.004	0.150	0.800	0.300	0.200	0.004	0.490		5.57	0.02		0.08	3.24	AC1IEEE+	1	GOVHYDR	4
SHIRGH4	SHIRGH4	NI	176.0	15.6	150.0	150.0	0.004	0.150	0.800	0.300	0.200	0.004	0.490		5.57	0.02		0.08	3.24	AC1IEEE+	1	GOVHYDR	4
KWALCC1	KWALCC1	NI	210.0	15.8	178.0	178.0	0.003	0.170	2.530	0.250	0.190	0.003	2.360	0.400	10.12	0.05	0.93	0.03	3.10	AC1IEEE+	1	GAST	2
KWALCC2	KWALCC2	NI	210.0	15.8	178.0	178.0	0.003	0.170	2.530	0.250	0.190	0.003	2.360	0.400	10.12	0.05	0.93	0.03	3.10	AC1IEEE+	1	GAST	2
KWALCC3	KWALCC3	NI	210.0	15.8	178.0	178.0	0.003	0.170	2.530	0.250	0.190	0.003	2.360	0.400	10.12	0.05	0.93	0.03	3.10	AC1IEEE+	1	PMCONST	1
SAPELST1	SAPELST1	NI	134.0	15.8	121.0	121.0	0.004	0.130	2.400	0.215	0.160	0.004	2.160		8.61	0.05		0.10	1.18	AC1IEEE+	1	GOVCLAS	1
SAPELST2	SAPELST2	NI	134.0	15.8	121.0	121.0	0.004	0.130	2.400	0.215	0.160	0.004	2.160		8.61	0.05		0.10	1.18	AC1IEEE+	1	GOVCLAS	1
SAPELST3	SAPELST3	NI	134.0	15.8	121.0	121.0				0.215					8.61	0.05		0.10	1.18	AC1IEEE+	1	GOVCLAS	1
SAPELST4	SAPELST4	NI	134.0	15.8	121.0	121.0	0.004	0.130	2.400	0.215	0.160	0.004	2.160		8.61	0.05		0.10	1.18	AC1IEEE+	1	GOVCLAS	1
SAPELST5	SAPELST5	NI	134.0	15.8	121.0	121.0	0.004	0.130	2.400	0.215	0.160	0.004	2.160		8.61	0.05		0.10	1.18	AC1IEEE+	1	GOVCLAS	1
SAPELST6	SAPELST6	NI	134.0	15.8	121.0	121.0	0.004	0.130	2.400	0.215	0.160	0.004	2.160		8.61	0.05		0.10	1.18	AC1IEEE+	1	GOVCLAS	1
AFAM6GT1	AFAM6GT1	NI	188.0	15.0	150.0	150.0	0.000	0.106	2.170	0.210	0.133	0.000	1.953	0.210	5.00	0.05	1.00	0.05	4.00	ST1IEEE	1	TURGAZ+	3
AFAM6GT2	AFAM6GT2	NI	188.0	15.0	150.0	150.0				0.210						0.05			4.00	ST1IEEE	1	TURGAZ+	3
AFAM6GT3	AFAM6GT3	NI	188.0	15.0	150.0	150.0				0.210						0.05	1.00	0.05	4.00	ST1IEEE	1	TURGAZ+	3
AFAM6GT4	AFAM6GT4	NI	188.0	15.0	150.0	150.0	0.000	0.106	2.170	0.210	0.133	0.000	1.953	0.210	5.00	0.05	1.00	0.05	4.00	ST1IEEE	1	TURGAZ+	3
AFAM6GT5	AFAM6GT5	NI	188.0	15.0	150.0	150.0	0.000	0.106	2.170	0.210	0.133	0.000	1.953	0.210	5.00	0.05	1.00	0.05	4.00	ST1IEEE	1	TURGAZ+	3
PAPA1GT1	PAPAGT12	NI	48.0	10.5	38.0	38.0	0.004	0.010	2.000	0.220	0.148	0.004	2.000		10.00	0.02		0.01	4.00	ST1IEEE	1	TURGAZ+	3
PAPA1GT2	PAPAGT12	NI	48.0	10.5	38.0	38.0	0.004	0.010	2.000	0.220	0.148	0.004	2.000		10.00	0.02		0.01	4.00	ST1IEEE	1	TURGAZ+	3
PAPA1GT3	PAPAGT34	NI	48.0	10.5	38.0	38.0				0.220					10.00	0.02		0.01	4.00	ST1IEEE	1	TURGAZ+	3
PAPA1GT4	PAPAGT34	NI	48.0	10.5	38.0	38.0				0.220					10.00	0.02		0.01	4.00	ST1IEEE	1	TURGAZ+	3
PAPA1GT5	PAPAGT56	NI	48.0	10.5	38.0	38.0				0.220					10.00			0.01	4.00	ST1IEEE	1	TURGAZ+	3
PAPA1GT6	PAPAGT56	NI	48.0	10.5	38.0	38.0				0.220					10.00			0.01	4.00	ST1IEEE	1	TURGAZ+	3
PAPA1GT7	PAPAGT78	NI	48.0	10.5	38.0	38.0				0.220					10.00			0.01	4.00	ST1IEEE	1	TURGAZ+	3
PAPA1GT8	PAPAGT78	NI	48.0	10.5	38.0	38.0				0.220					10.00			0.01	4.00	ST1IEEE	1	TURGAZ+	3
PAPA2GT1	PAPA2GT1	NI	158.0	15.0	126.0	126.0				0.210						0.02			4.00	ST1IEEE	1	TURGAZ+	3
PAPA2GT2	PAPA2GT2	NI	158.0	15.0	126.0	126.0			-	0.210									4.00	ST1IEEE	1	TURGAZ+	3
PAPA2GT2	PAPA2GT3	NI	158.0	15.0	126.0	126.0				0.210						0.05			4.00	ST1IEEE	1	TURGAZ+	3
																				_	_		3
PAPA2GT4	PAPA2GT4	NI	158.0	15.0	126.0	126.0	0.000	0.106	2.170	0.210	0.133	0.000	1.953	0.210	5.00	0.05	1.00	0.05	4.00	ST1IEEE	1	TURGAZ+	L

Machine	Noeud	Pays	SN	VN	PN turb	PN alt	Rs	Xs	Xd	X'd	X"d	Xq	X'q	X"q	T'do	T"do	T'qo	T"qo	Н	AVR	DATA	GOVERNOR	DATA
Nom	Nom	Nom	MVA	kV	MW	MW	pu	S	S	S	S	MW.s/MVA		SET		SET							
OMOT1GT1	OMOTGT12	NI	48.0	10.5	38.0	38.0	0.004	0.140	2.380	0.231	0.170	0.004	2.380	0.231	10.20	0.05	1.50	0.05	4.00	AC1IEEE+	1	TURGAZ+	3
OMOT1GT2	OMOTGT12	NI	48.0	10.5	38.0	38.0	0.004	0.140	2.380	0.231	0.170	0.004	2.380	0.231	10.20	0.05	1.50	0.05	4.00	AC1IEEE+	1	TURGAZ+	3
OMOT1GT3	OMOTGT34	NI	48.0	10.5	38.0	38.0	0.004	0.140	2.380	0.231	0.170	0.004	2.380	0.231	10.20	0.05	1.50	0.05	4.00	AC1IEEE+	1	TURGAZ+	3
OMOT1GT4	OMOTGT34	NI	48.0	10.5	38.0	38.0	0.004	0.140	2.380	0.231	0.170	0.004	2.380	0.231	10.20	0.05	1.50	0.05	4.00	AC1IEEE+	1	TURGAZ+	3
OMOT1GT5	OMOTGT56	NI	48.0	10.5	38.0	38.0	0.004	0.140	2.380	0.231	0.170	0.004	2.380	0.231	10.20	0.05	1.50	0.05	4.00	AC1IEEE+	1	TURGAZ+	3
OMOT1GT6	OMOTGT56	NI	48.0	10.5	38.0	38.0	0.004	0.140	2.380	0.231	0.170	0.004	2.380	0.231	10.20	0.05	1.50	0.05	4.00	AC1IEEE+	1	TURGAZ+	3
OMOT1GT7	OMOTGT78	NI	48.0	10.5	38.0	38.0	0.004	0.140	2.380	0.231	0.170	0.004	2.380	0.231	10.20	0.05	1.50	0.05	4.00	AC1IEEE+	1	TURGAZ+	3
OMOT1GT8	OMOTGT78	NI	48.0	10.5	38.0	38.0	0.004	0.140	2.380	0.231	0.170	0.004	2.380	0.231	10.20	0.05	1.50	0.05	4.00	AC1IEEE+	1	TURGAZ+	3
OMOT2GT1	OMOT2GT1	NI	158.0	15.0	126.0	126.0	0.000	0.106	2.170	0.210	0.133	0.000	1.953	0.210	5.00	0.05	1.00	0.05	4.00	ST1IEEE	1	TURGAZ+	3
OMOT2GT2	OMOT2GT2	NI	158.0	15.0	126.0	126.0	0.000	0.106	2.170	0.210	0.133	0.000	1.953	0.210	5.00	0.05	1.00	0.05	4.00	ST1IEEE	1	TURGAZ+	3
OMOT2GT3	OMOT2GT3	NI	158.0	15.0	126.0	126.0	0.000	0.106	2.170	0.210	0.133	0.000	1.953	0.210	5.00	0.05	1.00	0.05	4.00	ST1IEEE	1	TURGAZ+	3
OMOT2GT4	OMOT2GT4	NI	158.0	15.0	126.0	126.0	0.000	0.106	2.170	0.210	0.133	0.000	1.953	0.210	5.00	0.05	1.00	0.05	4.00	ST1IEEE	1	TURGAZ+	3
GEREGGT1	GEREGGT1	NI	174.0	15.8	148.0	148.0	0.000	0.106	1.918	0.184	0.121	0.000	1.918	0.330	10.00	0.05	2.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
GEREGGT2	GEREGGT2	NI	174.0	15.8	148.0	148.0	0.000	0.106	1.918	0.184	0.121	0.000	1.918	0.330	10.00	0.05	2.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
GEREGGT3	GEREGGT3	NI	174.0	15.8	148.0	148.0	0.000	0.106	1.918	0.184	0.121	0.000	1.918	0.330	10.00	0.05	2.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
GEREGGT4	GEREGGT4	NI	174.0	15.8	148.0	148.0	0.000	0.106	2.170	0.210	0.133	0.000	1.953	0.210	5.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
GEREGGT5	GEREGGT5	NI	174.0	15.8	148.0	148.0	0.000	0.106	2.170	0.210	0.133	0.000	1.953	0.210	5.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
GEREGGT6	GEREGGT6	NI	174.0	15.8	148.0	148.0	0.000	0.106	2.170	0.210	0.133	0.000	1.953	0.210	5.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
ALAOJGT1	ALAOJGT1	NI	141.0	15.0	120.0	120.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
ALAOJGT2	ALAOJGT2	NI	141.0	15.0	120.0	120.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
ALAOJGT3	ALAOJGT3	NI	141.0	15.0	113.0	113.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
ALAOJGT4	ALAOJGT4	NI	158.0	15.0	126.0	126.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
CALABGT1	CALABGT1	NI	141.0	15.0	113.0	113.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
CALABGT2	CALABGT2	NI	141.0	15.0	113.0	113.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
CALABGT3	CALABGT3	NI	141.0	15.0	113.0	113.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
CALABGT4	CALABGT4	NI	141.0	15.0	113.0	113.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
CALABGT5	CALABGT5	NI	141.0	15.0	113.0	113.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
EGBEMGT1	EGBEMGT1	NI	141.0	15.0	113.0	113.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
EGBEMGT2	EGBEMGT2	NI	141.0	15.0	113.0	113.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
EGBEMGT3	EGBEMGT3	NI	141.0	15.0	113.0	113.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
EYAENGT1	EYAENGT1	NI	141.0	15.0	113.0	113.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
EYAENGT2	EYAENGT2	NI	141.0	15.0	113.0	113.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
EYAENGT3	EYAENGT3	NI	141.0	15.0	113.0	113.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
EYAENGT4	EYAENGT4	NI	141.0	15.0	113.0	113.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
GBARAGT1	GBARAGT1	NI	141.0	15.0	113.0	113.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
GBARAGT2	GBARAGT2	NI	141.0	15.0	113.0	113.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
IKOTAGT1	IKOTAGT1	NI	141.0	15.0	113.0	113.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
IKOTAGT2	IKOTAGT2	NI	141.0	15.0	113.0	113.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
IKOTAGT3	IKOTAGT3	NI	141.0	15.0	113.0	113.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
SAPELGT1	SAPELGT1	NI	141.0	15.0	113.0	113.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
SAPELGT2	SAPELGT2	NI	141.0	15.0	113.0	113.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
SAPELGT3	SAPELGT3	NI	141.0	15.0	113.0	113.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
SAPELGT4	SAPELGT4	NI	141.0	15.0	113.0	113.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3

Machine	Noeud	Pays	SN	VN	PN turb	PN alt	Rs	Xs	Xd	X'd	X''d	Χq	X'q	X"q	T'do	T''do	T'qo	T''qo	Н	AVR	DATA	GOVERNOR	DATA
Nom	Nom	Nom	MVA	kV	MW	MW	pu	S	S	S	S	MW.s/MVA		SET		SET							
OMOKUGT1	OMOKUGT1	NI	141.0	15.0	113.0	113.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
OMOKUGT2	OMOKUGT2	NI	141.0	15.0	113.0	113.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
OMOKURG1	OMOKURG1	NI	62.0	11.5	50.0	50.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	TURGAZ+	3
OMOKURG2	OMOKURG2	NI	62.0	11.5	50.0	50.0	0.004	0.180	2.300	0.300	0.220	0.004	2.200	0.250	8.00	0.02	0.50	0.01	2.00	AC1IEEE+	1	TURGAZ+	3
ALSCOGT1	ALSCOGT1	NI	112.0	15.0	90.0	90.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
ALSCOGT2	ALSCOGT2	NI	112.0	15.0	90.0	90.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
ALSCOGT3	ALSCOGT3	NI	112.0	15.0	90.0	90.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
ALSCOGT4	ALSCOGT4	NI	112.0	15.0	90.0	90.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
ALSCOGT5	ALSCOGT5	NI	112.0	15.0	90.0	90.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
ALSCOGT6	ALSCOGT6	NI	112.0	15.0	90.0	90.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
IBOMGT01	IBOMGT01	NI	48.0	11.5	38.0	38.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	2.00	AC1IEEE+	1	TURGAZ+	3
IBOMGT02	IBOMGT02	NI	48.0	11.5	38.0	38.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	2.00	AC1IEEE+	1	TURGAZ+	3
IBOMGT03	IBOMGT03	NI	140.0	15.0	112.0	112.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
ICSPOWG1	ICSPOWG1	NI	125.0	15.0	100.0	100.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
ICSPOWG2	ICSPOWG2	NI	125.0	15.0	100.0	100.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
ICSPOWG3	ICSPOWG3	NI	125.0	15.0	100.0	100.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
ICSPOWG4	ICSPOWG4	NI	125.0	15.0	100.0	100.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
ICSPOWG5	ICSPOWG5	NI	125.0	15.0	100.0	100.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
ICSPOWG6	ICSPOWG6	NI	125.0	15.0	100.0	100.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
BONMOBG1	BONMOBG1	NI	162.0	15.0	130.0	130.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
BONMOBG2	BONMOBG2	NI	162.0	15.0	130.0	130.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
BONMOBG3	BONMOBG3	NI	162.0	15.0	130.0	130.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
CHEVROG1	CHEVROG1	NI	312.0	16.0	250.0	250.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
CHEVROG2	CHEVROG2	NI	312.0	16.0	250.0	250.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
CHEVROG3	CHEVROG3	NI	312.0	16.0	250.0	250.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
TOTALFG1	TOTALFG4	NI	156.0	15.0	125.0	125.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
TOTALFG2	TOTALFG3	NI	156.0	15.0	125.0	125.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
TOTALFG3	TOTALFG2	NI	156.0	15.0	125.0	125.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
TOTALFG4	TOTALFG1	NI	156.0	15.0	125.0	125.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
WESTCOG1	WESTCOG4	NI	156.0	15.0	125.0	125.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
WESTCOG2	WESTCOG3	NI	156.0	15.0	125.0	125.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
WESTCOG3	WESTCOG2	NI	156.0	15.0	125.0	125.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
WESTCOG4	WESTCOG1	NI	156.0	15.0	125.0	125.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
IBOMP2G1	IBOMP2G1	NI	156.0	15.0	125.0	125.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
IBOMP2G2	IBOMP2G2	NI	156.0	15.0	125.0	125.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
IBOMP2G3	IBOMP2G3	NI	156.0	15.0	125.0	125.0					0.164								1.37	AC1IEEE+	1	TURGAZ+	3
IBOMP2G4	IBOMP2G4	NI	156.0	15.0	125.0	125.0					0.164								1.37	AC1IEEE+	1	TURGAZ+	3
FARMELEG	FARMELEG	NI	188.0	15.0	150.0	150.0	0.000	0.119	1.820	0.231	0.164	0.000	1.660	0.330	8.00	0.05	1.00	0.05	1.37	AC1IEEE+	1	TURGAZ+	3
ALAOCCG1	ALAOCCG1	NI	335.0	17.0	285.0	285.0					0.230								3.09	AC1IEEE+	1	CCGOV	1
	ALAOCCG2	NI	335.0	17.0	285.0	285.0					0.230								3.09	AC1IEEE+	1	CCGOV	1

165/167

9.2. Convertisseurs

Machine	Noeud	SN	VN	Filtre	Resistance	Reactance	Controle	Data
Nom	Nom	MVA	kV	S				Set
WIND_1G	CAPEB11G	156	15	0.01	0	0.8	WINDFEQ	1
NIGEREOL	NIAM2_06	36	15	0.01	0	0.8	WINDFEQ	1

9.3. SVC

SVC	Noeud de connexion	Pays	Tension	Q reactive minimum	Q reactive maximum
Nom	Nom	Nom	kV	Mvar (reactif)	Mvar (capacitif)
KENYASVC	1414KENY	GH	11	-40	40
TAMALSVC	1282ATAM	GH	34.5	-40	40
MONROSVC	MONROV03	LI	225	-65	0
BUMBUSVC	BUMBUN03	SL	225	-32	2
LINSASVC	LINSAN03	GU	225	-15	15

Dans les études statiques, les SVC sont modélisés comme des charges. En dynamique, ils se comportent selon la fonction de transfert du macroblock INTERSVC.

Tractebel Engineering, l'une des premières sociétés de conseil en ingénierie à l'échelle européenne, fait partie de GDF SUEZ, un groupe industriel qui dispose d'une solidité financière pour relever les défis du futur. Avec près de 3 900 collaborateurs présents dans 20 pays, nous offrons des solutions d'ingénierie à nos clients actifs dans les domaines de l'électricité, du nucléaire, du gaz, de l'industrie et des infrastructures et ce tout au long du cycle de vie des projets. Nos compétences s'expriment au travers d'un large éventail de services d'ingénierie : Consultance, Conception et Assistance à Maîtrise d'Ouvrage. Nos clients sont des entreprises privées et publiques ainsi que des institutions nationales et internationales.

TRACTEBEL ENGINEERING S.A.

Avenue Ariane 7 1200 Bruxelles - BELGIQUE www.tractebel-engineering-gdfsuez.com

Yves BOUFFIOULX tel. +32 2 773 83 79 fax +32 2 773 88 90 yves.bouffioulx@gdfsuez.com